Skip to main content
Log in

Global Attractor for a Wave Equation with Nonlinear Localized Boundary Damping and a Source Term of Critical Exponent

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The paper addresses long-term behavior of solutions to a damped wave equation with a critical source term. The dissipative frictional feedback is restricted to a subset of the boundary of the domain. This paper derives inverse observability estimates which extend the results of Chueshov et al. (Disc Contin Dyn Syst 20:459–509, 2008) to systems with boundary dissipation. In particular, we show that a hyperbolic flow under a critical source and geometrically constrained boundary damping approaches a smooth finite-dimensional global attractor. A similar result for subcritical sources was given in Chueshov et al. (Commun Part Diff Eq 29:1847–1876, 2004). However, the criticality of the source term in conjunction with geometrically restricted dissipation constitutes the major new difficulty of the problem. To overcome this issue we develop a special version of Carleman’s estimates and apply them in the context of abstract results on dissipative dynamical systems. In contrast with the localized interior damping (Chueshov et al. Disc Contin Dyn Syst 20:459–509, 2008), the analysis of a boundary feedback requires a more careful treatment of the trace terms and special tangential estimates based on microlocal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Arrieta J., Carvalho A.N., Hale J.K.: A damped hyperbolic equation with critical exponent. Commun. Part. Diff. Eq. 17, 841–866 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babin A.V., Vishik M.I.: Attractors of Evolution Equations. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  4. Ball J.M.: Global attractors for damped semilinear wave equations. Discr. Contin. Dyn. Syst. 10, 31–52 (2004)

    Article  MATH  Google Scholar 

  5. Barbu V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press Inc., Boston, MA (1993)

    MATH  Google Scholar 

  6. Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30, 1024–1065 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brossard R., Loheac R., Moussaoui J.-P.: M. Rellich relations for mixed boundary elliptic problems. Prog. Nonlinear Part. Diff. Eq. Appl. 63, 93–102 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chueshov, I.: Introduction to the Theory of Infinite-Dimensional Dissipative Systems. AKTA (2002). http://www.emis.de/monographs/Chueshov/

  9. Chueshov I., Lasiecka I.: Attractors for second-order evolution equations with a nonlinear damping. J. Dyn. Diff. Eq. 16, 469–512 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chueshov, I., Lasiecka, I.: Long-time dynamics of semilinear wave equation with nonlinear interior-boundary damping and sources of critical exponents. In: Control Methods in PDE-Dynamical Systems, Snowbird, Utah 2005. Contemp. Math., vol. 426, pp. 153–193, AMS, Providence, RI (2007)

  11. Chueshov I., Lasiecka I.: Long-time dynamics of von Karman semi-flows with nonlinear boundary/interior damping. J. Diff. Eq. 233, 42–86 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chueshov, I., Lasiecka, I.: Long-time behavior of second order evolution equations with nonlinear damping. Memoirs AMS 195 (2008)

  13. Chueshov I., Eller M., Lasiecka I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Common. Part. Diff. Eq. 27, 1901–1951 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chueshov I., Eller M., Lasiecka I.: Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation. Commun. Part. Diff. Eq. 29, 1847–1876 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chueshov I., Lasiecka I., Toundykov D.: Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discr. Contin. Dyn. Syst. 20, 459–509 (2008)

    MATH  MathSciNet  Google Scholar 

  16. Daoulatli, M., Lasiecka, I., Toundykov, D.: Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discr. Contin. Dyn. Syst. (2009) (To appear)

  17. Feireisl E.: Attractors for wave equations with nonlinear dissipation and critical exponent. C.R. Acad. Sci. Paris, Sér. I Math. 315, 551–555 (1992)

    MATH  MathSciNet  Google Scholar 

  18. Feireisl E.: Finite dimensional asymptotic behavior of some semilinear damped hyperbolic problems. J. Dyn. Diff. Eq. 6, 23–35 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Feireisl E.: Global attractors for semilinear damped wave equations with supercritical exponent. J. Diff. Eq. 116, 431–447 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Feireisl E., Zuazua E.: Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent. Commun. Part. Diff. Eq. 18, 1539–1555 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Georgiev V., Todorova G.: Existence of solutions of the wave equation with nonlinear damping and source term. J. Diff. Eq. 109, 295–308 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ghidaglia J.M., Temam R.: Attractors for damped nonlinear hyperbolic equations. J. Math. Pures Appl. 66, 273–319 (1987)

    MATH  MathSciNet  Google Scholar 

  23. Hale J.K.: Asymptotic Behavior of Dissipative Systems. AMS, Providence, RI (1988)

    MATH  Google Scholar 

  24. Hale, J.K., Raugel, G.: Attractors for dissipative evolutionary equations. In: International Conference on Differential Equations, Vols. 1, 2, Barcelona, 1991, World Scientific Publishing, River Edge, NJ (1993)

  25. Haraux A.: Seminlinear Hyperbolic Problems in Bounded Domains. Mathematical Reports, vol. 3. Harwood Gordon Breach, New York (1987)

    Google Scholar 

  26. Huang Yu.: Global attractors for semilinear wave equations with nonlinear damping and critical exponent. Appl. Anal. 56, 165–174 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Joly R.: Convergence of the wave equation damped on the interior to the one damped on the boundary. J. Diff. Eq. 229, 588–653 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Khanmamedov A.Kh.: Global attractors for von Karman equations with nonlinear dissipation. J. Math. Anal. Appl. 318, 92–101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Khanmamedov A.Kh.: Finite dimensionality of the global attractors for von Karman equations with nonlinear interior dissipation. Nonlinear Anal. 66, 204–213 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kostin I.N.: Attractor for a semilinear wave equation with boundary damping. J. Math. Sci. 98, 753–764 (2000)

    Article  MathSciNet  Google Scholar 

  31. Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation. Diff. Integr. Eq. 6, 507–533 (1993)

    MATH  MathSciNet  Google Scholar 

  32. Lasiecka I., Toundykov D.: Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms. Nonlinear Anal. 64, 1757–1797 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lasiecka I., Triggiani R.: Uniform stabilization of the wave equation with dirichlet or neumann feedback control without geometrical conditions. Appl. Math. Optim. 25, 189–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lasiecka, I., Triggiani, R.: Carleman estimates and exact boundary controllability for a system of coupled nonconservative second-order hyperbolic equations. In: Partial Differential Equation Methods in Control and Shape Analysis, Pisa. Dekker, New York (1997)

  35. Lasiecka I., Lions J.L., Triggiani R.: Nonhomogenous boundary value problems for second order hyperbolic equations. J. Math Pure et Appliques 65, 149–192 (1986)

    MATH  MathSciNet  Google Scholar 

  36. Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative wave equations with unobserved Neumann B.C.: global uniqueness and observability in one shot. In: Differential Geometric Methods in the Control of Partial Differential Equations, Boulder, CO, 1999, pp. 227-325. AMS, Providence, RI (2000)

  37. Málek J., Nečas J.: A finite dimensional attractor for three dimensional flow of incompressible fluids. J. Diff. Eq. 127, 498–518 (1996)

    Article  MATH  Google Scholar 

  38. Málek J., Pražak D.: Large time behavior via the method of l-trajectories. J. Diff. Eq. 181, 243–279 (2002)

    Article  MATH  Google Scholar 

  39. Mazya, V.G., Shaposhnikova, T.O.: Theory of Multipliers in Spaces of Differentiable Functions. Pitman (1985)

  40. Nakao M.: Global attractors for nonlinear wave equations with nonlinear dissipative terms. J. Diff. Eq. 227, 204–229 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Prazak D.: On finite fractal dimension of the global attractor for the wave equation with nonlinear damping. J. Dyn. Diff. Eq. 14, 764–776 (2002)

    Article  MathSciNet  Google Scholar 

  42. Rammaha M., Strei T.: Clobal existence and nonexistence for nonlinear wave equation with damping and source term. Trans. Am. Math. Soc. 354, 3621–3637 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Raugel G.: Global attractors in partial differential equations. In: Fiedler, B. (eds) Handbook of Dynamical Systems, vol. 2, pp. 885–982. Elsevier, Amsterdam (2002)

    Google Scholar 

  44. Serrin J., Todorova G., Vitillaro E.: Existence for a nonlinear wave equation with damping and source terms. Integr. Diff. Eq. 16, 13–50 (2003)

    MATH  MathSciNet  Google Scholar 

  45. Showalter R.E.: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. AMS, Providence, RI (1997)

    Google Scholar 

  46. Temam R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York (1988)

    MATH  Google Scholar 

  47. Toundykov D.: Optimal decay rates for solutions of nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponents source terms under mixed boundary conditions. Nonlinear Anal. T. M. A 67, 512–544 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Vancostenoble J., Martinez P.: Optimality of energy estimates for the wave equation with nonlinear boundary velocity damping. SIAM J. Control Optim. 39, 776–797 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Lasiecka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chueshov, I., Lasiecka, I. & Toundykov, D. Global Attractor for a Wave Equation with Nonlinear Localized Boundary Damping and a Source Term of Critical Exponent. J Dyn Diff Equat 21, 269–314 (2009). https://doi.org/10.1007/s10884-009-9132-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-009-9132-y

Keywords

Mathematics Subject Classifications (2000)

Navigation