Skip to main content
Log in

A Geometric Condition Implying an Energy Equality for Solutions of the 3D Navier–Stokes Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We prove that every weak solution u to the 3D Navier–Stokes equation that belongs to the class L 3 L 9/2 and ∇u belongs to L 3 L 9/5 locally away from a 1/2-Hölder continuous curve in time satisfies the generalized energy equality. In particular every such solution is suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beir ao da Veiga, H.: A new regularity class for the Navier–Stokes equations in Rσ p n. Chin. Ann. Math. Ser. B 16(4), 407–412 (1995). A Chinese summary appears in Chin. Ann. Math. Ser. A 16(6), 797 (1995)

    Google Scholar 

  2. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations (2007, submitted)

  4. Cheskidov, A., Friedlander, S., Shvydkoy, R.: On the energy equality for weak solutions of the 3D Navier–Stokes equations (2007, submitted)

  5. Constantin P., Weinan E., Titi E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209 (1994)

    Article  MATH  Google Scholar 

  6. Duchon J., Robert R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13(1), 249–255 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kukavica I.: Role of the pressure for validity of the energy equality for solutions of the Navier–Stokes equation. J. Dynam. Differ. Equ. 18(2), 461–482 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ladyženskaja O.A., Solonnikov V.A., Ural′ceva N.N.: Lineinye i kvazilineinye uravneniya parabolicheskogo tipa. Izdat. Nauka, Moscow (1968)

    Google Scholar 

  9. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lin F.: A new proof of the Caffarelli-Kohn-Nirenberg theorem. Commun. Pure Appl. Math. 51(3), 241–257 (1998)

    Article  MATH  Google Scholar 

  11. Lions J.L.: Sur la régularité et l’unicité des solutions turbulentes des équations de Navier Stokes. Rend. Sem. Mat. Univ. Padova 30, 16–23 (1960)

    MATH  MathSciNet  Google Scholar 

  12. Scheffer V.: Partial regularity of solutions to the Navier–Stokes equations. Pacific J. Math. 66(2), 535–552 (1976)

    MATH  MathSciNet  Google Scholar 

  13. Scheffer V.: Hausdorff measure and the Navier–Stokes equations. Commun. Math. Phys. 55(2), 97–112 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Scheffer V.: The Navier–Stokes equations on a bounded domain. Commun. Math. Phys. 73(1), 1–42 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Nonlinear Problems (Proc. Sympos., Madison, Wis.), pp. 69–98. University of Wisconsin Press, Madison, Wis. (1963)

  16. Shinbrot M.: The energy equation for the Navier–Stokes system. SIAM J. Math. Anal. 5, 948–954 (1974)

    Article  MathSciNet  Google Scholar 

  17. Sohr H., von Wahl W.: On the regularity of the pressure of weak solutions of Navier–Stokes equations. Arch. Math. (Basel) 46(5), 428–439 (1986)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shvydkoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvydkoy, R. A Geometric Condition Implying an Energy Equality for Solutions of the 3D Navier–Stokes Equation. J Dyn Diff Equat 21, 117–125 (2009). https://doi.org/10.1007/s10884-008-9124-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-008-9124-3

Keywords

Mathematics Subject Classification (2000)

Navigation