Skip to main content
Log in

Levitan Almost Periodic and Almost Automorphic Solutions of V-monotone Differential Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

In the present article we consider a special class of equations

$$x'=f(t, x)\quad \quad \quad (1)$$

when the function \(f : \mathbb R \times E \to E\) (E is a strictly convex Banach space) is V-monotone with respect to (w.r.t.) \(x \in E\) , i.e. there exists a continuous non-negative function \(V: E\times E \to \mathbb R_{+}\) , which equals to zero only on the diagonal, so that the numerical function α(t):= V(x 1(t), x 2(t)) is non-increasing w.r.t. \(t\in \mathbb R_{+}\) , where x 1(t) and x 2(t) are two arbitrary solutions of (1) defined on \(\mathbb R_{+}\) . The main result of this article states that every V-monotone Levitan almost periodic (almost automorphic, Bohr almost periodic) Eq. (1) with bounded solutions admits at least one Levitan almost periodic (almost automorphic, Bohr almost periodic) solution. In particulary, we obtain some new criterions of existence of almost recurrent (Levitan almost periodic, almost automophic, recurrent in the sense of Birkgoff) solutions of forced vectorial Liénard equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V. (1976). Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff Int. Publ. Leyden the Netherlands.

  2. Basit B.R. (1971). A connection between the almost periodic functions of Levitan and almost automorphic functions. Vestnik Moskov. Univ. Ser. I Mat. Meh. 26(4):11–15

    MATH  MathSciNet  Google Scholar 

  3. Basit B. (1977). Les Fonctions Abstraites Presques Automorphiques et Presque Périodiques au Sens de Levitan, et Leurs Différence. Bull. Sci. Math. (2) 101(2):131–148

    MATH  MathSciNet  Google Scholar 

  4. Bronshteyn I.U. (1979). Extensions of Minimal Transformation Groups. Noordhoff, Leyden

    Google Scholar 

  5. Bronshteyn, I. U. (1984). Nonautonomous Dynamical Systems. Kishinev, “Shtiintsa” (in Russian).

  6. Cheban D.N. (1977). On the comparability of the points of dynamical systems with regard to the character of recurrence property in the limit. Kishinev, “Shtiintsa” Math. Sci. 1:66–71

    Google Scholar 

  7. Cheban D.N. (1997). Global attractors of infinite-dimensional non-autonomous dynamical systems, I. Bull. Acad. Sci. Rep. Moldova. Math. N3(25):42–55

    MathSciNet  Google Scholar 

  8. Cheban D.N. (2001). Global pullback attractors of \(\mathbb C\) -analytic non-aautonomous dynamical systems. Stoch. Dyn. 1(4):511–536

    Article  MATH  MathSciNet  Google Scholar 

  9. Cheban, D. N. (2002). Asymptotical Almost Periodic Solutions of Differential Equations. Chişinău, State University of Moldova (in Russian), p. 227.

  10. Cheban, D. N. (2004). Global Attractors of Non-Autonomous Dissipative Dynamical Systems. Interdisciplinary Mathematical Sciences, Vol. 1, World Scientific, River Edge, NJ, pp. 528.

  11. Cheban D.N., Mammana C. (2005). Invariant manifolds, almost periodic and almost automorphic solutions of seconde-order monotone equations. Int. J. Evol. Eqs. 1(4):319–343

    MATH  MathSciNet  Google Scholar 

  12. Cheresiz V.M. (1965). Almost periodic solutions of nonlinear systems. Soviet Math. Dokl. 6:1446–1449

    MATH  Google Scholar 

  13. Cheresiz V.M. (1972). V-Monotone systems and almost periodical solutions. Sibirskii Matematicheskii Zhurnal 13(4):921–932

    Google Scholar 

  14. Cheresiz V.M. (1972). Uniformly V-monotone systems. Almost periodical solutions. Sibirskii Matematicheskii Zhurnal 13(5):11107–1123

    Google Scholar 

  15. Cieutat P. (2005). Almost periodic solutions of forced vectorial Liénard equations. J. Diff. Eqs. 209:302–328

    Article  MATH  MathSciNet  Google Scholar 

  16. Dafermos, C. M. (1977). Almost periodic processes and almost periodic solutions of evolution equations, Dynamical Systems. In: Proceedings of the International Symposium, University of Florida, Gainesville, FL; Academic Press, New York, pp. 43–57.

  17. Egawa J. (1985). A characterization of almost automorphic functions. Proc. Japan Acad. Ser. A Math. Sci. 61(7):203–206

    Article  MATH  MathSciNet  Google Scholar 

  18. Falun H. (1990). Existence of almost periodic solutions for dissipative. Ann. of Diff. Eqs. 6(3):271–279

    MATH  Google Scholar 

  19. Fink, A. M. (1974). Almost Periodic Differential Equations. Lecture Notes in Mathematics, Vol. 377, Springer, Berlin, New York.

  20. Haraux, A. (1981). Nonlinear Evolution Equations—Global Behavior of Solutions. Lecture Notes in Mathematics, Vol. 841, Springer, Berlin, New York.

  21. Haraux A. (1988). Attractors of asymptotically compact processes and applications to nonlinear partial differential equations. Commun. Partial Differ. Equat. 13(11):1383–1414

    Article  MATH  MathSciNet  Google Scholar 

  22. Haraux, A. (1991). Systémes Dynamiques Dissipativs et Applications. Masson, Paris, Milan, Barselona, Rome.

  23. Hassani, N. (1983). Systems Dynamiques Non-Autonomes Contractants et Leurs Applications. These de Magister. USTHB, Algerie.

  24. Ishii H. (1982). On the exitence of almost periodic complete trajectories for contractive almost periodic processes. J. Diff. Eqs. 48(1):66–72

    Article  Google Scholar 

  25. Levitan B.M., Zhikov V.V. (1982). Almost Periodic Functions and Differential Equations. Cambridge Univ. Press, London

    MATH  Google Scholar 

  26. Milnes P. (1977). Almost automorphic functions and totally bounded groups. Rocky Mountain J. Math. 7(2):231–250

    Article  MATH  MathSciNet  Google Scholar 

  27. Sacker, R. J., and Sell, G. R. (1977). Lifting properties in skew-product flows with applications to differential equations. Memoirs Amer. Math. Soc. 11.

  28. Sell G.R. (1971). Lectures on Topological Dynamics and Differential Equations. Van Nostrand–Reinbold, London

    Google Scholar 

  29. Shcherbakov B.A. (1972). Topologic Dynamics and Poisson Stability of Solutions of Differential Equations. Shtiintsa, Kishinev (in Russian).

    Google Scholar 

  30. Shcherbakov B.A. (1985). The Poisson‘s Stability of Motions of Dynamical Systems and Solutions of Differential Equations. Shtiintsa, Kishinev (in Russian)

    Google Scholar 

  31. Shen W., Yi Y. (1998). Almost automorphic and almost periodic dynamics in skew-product semiflows. Mem. Amer. Math. Soc. 136(647):x+93

    MathSciNet  Google Scholar 

  32. Sibirsky K.S. (1975). Introduction to Topological Dynamics. Noordhoff, Leyden

    MATH  Google Scholar 

  33. Trubnikov, Yu. V., and Perov, A. I. (1986). The Differential Equations with Monotone Nonlinearity. Nauka i Tehnika. Minsk (in Russian).

  34. Zhikov V.V. (1972). Monotonicity in the theory of nonlinear almost periodical operationel equations. Matematicheskii Sbornik 90(132)(2):214–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Cheban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheban, D.N. Levitan Almost Periodic and Almost Automorphic Solutions of V-monotone Differential Equations. J Dyn Diff Equat 20, 669–697 (2008). https://doi.org/10.1007/s10884-008-9101-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-008-9101-x

Keywords

Mathematics Subject Classification (1991)

Navigation