Skip to main content
Log in

Multi-bump Solutions for the Quasilinear Choquard Equation in \(\mathbb {R}^{N}\)

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

This paper deal with the following quasilinear Choquard equation in \(\mathbb {R}^{N}\):

$ \left \{\begin {array}{l} -{\Delta } u-u{\Delta }u^{2} +(\lambda V(x)+1) u = \left (\frac {1}{|x|{\!}^{\mu }} *|u|{\!}^{p}\right )|u|{\!}^{p-2} u, \quad x \in \mathbb {R}^{N}, \\ u \in H^{1}\left (\mathbb {R}^{N}\right ), \end {array}\right . $

where \(0<\mu <\min \limits \left \{ 2, 8-2N\right \} , 2\le N<4, p \in \left [4, \frac {2N-\mu }{N-2}\right ),\) and λ > 0 is a real parameter. Here, \(2^{*}=\frac {2 N}{N-2}\) if \(N \geq 3,2^{*}=+\infty \), if N = 2. The potential V: \(\mathbb {R}^{N} \rightarrow \mathbb {R}\) is a nonnegative continuous function verifying some assumptions. Using variational methods, we show that if \({\Omega }:=\text {int}V^{-1} \left (0 \right )\) has several isolated connected components Ω1,⋯ ,Ωk satisfying the interior of Ωj is non-empty and that Ωj is smooth, thus for λ > 0 large enough, the above equation has at least 2k − 1 multi-bump solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves CO. Existence of multi-bump solutions for a class of quasilinear problems. Adv Nonlinear Stud 2006;6:491–509.

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves CO, Miyagaki OH, Souto MAS. Multi-bump solutions for a class of quasilinear equations on \(\mathbb {R}\). Commun Pure Appl Anal 2012;11:829–44.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves CO, Nóbrega AB, Yang MB. Multi-bump solutions for Choquard equation with deepning potential well. Calc Var Partial Differ Equ 2016;55: 48.

    Article  MATH  Google Scholar 

  4. Alves CO, Yang MB. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in \(\mathbb {R}^{3}\). Discrete Contin Dyn Syst 2016;36:5881–10.

    Article  MathSciNet  MATH  Google Scholar 

  5. Alves CO, Ji C. 2021. Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well, Sci China Math. https://doi.org/10.1007/s11425-020-1821-9.

  6. Alves CO, Figueiredo GM, Severo UB. Multiplicity of positive solutions for a class of quasilinear problems. Adv Diff Equ 2009;14:911–42.

    MathSciNet  MATH  Google Scholar 

  7. Bartsch T, Pankov A, Wang Z-Q. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math 2001;3:549–69.

    Article  MathSciNet  MATH  Google Scholar 

  8. Brézis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc 1983;88:486–90.

    Article  MathSciNet  MATH  Google Scholar 

  9. Colin M, Jeanjean L. Solutions for a quasilinear Schrödinger equations: a dual approach. Nonlinear Anal 2004;56:213–26.

    Article  MathSciNet  MATH  Google Scholar 

  10. del Pino M, Felmer PL. Local mountain passes for semilinear elliptic problems in unbounded domains. Calc Var Partial Differ Equ 1996;4:121–37.

    Article  MathSciNet  MATH  Google Scholar 

  11. Díaz JI. On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via singular potentials: the multi-dimensional case. SeMA J 2017;74(3):255–78.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding YH, Tanaka K. Multiplicity of positives solutions of a nonlinear Schrödinger equations. Manuscr Math 2003;112:109–35.

    Article  MATH  Google Scholar 

  13. do Ó JM, Miyagaki OH, Soares SHM. Soliton solutions for quasilinear Schrödinger equations with critical growth. J Differ Equ 2010;248:722–44.

    Article  MATH  Google Scholar 

  14. do Ó JM, Miyagaki OH, Soares SHM. Soliton solutions for quasilinear Schrödinger equations: the critical exponential case. Nonlinear Anal 2007; 67:3357–72.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gilbarg D, Trudinger N. Elliptic partial differential equations of second order. New York: Springer; 1983.

    MATH  Google Scholar 

  16. Guo YX, Tang ZW. Multi-bump bound state solutions for the quasilinear Schrödinger equation with critical frequency. Pac J Math 2014;270:49–77.

    Article  MATH  Google Scholar 

  17. Ji C, Rădulescu VD. Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. J Differ Equ 2021;306:251–79.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurihura S. Large-amplitude quasi-solitons in superfluid films. J Phys Soc Japan 1981;50:3262–67.

    Article  Google Scholar 

  19. Laedke E, Spatschek K, Stenflo L. Evolution theorem for a class of perturbed envelope soliton solutions. J Math Phys 1983;24:2764–69.

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang SH, Shi SY. Existence of multi-bump solutions for a class of Kirchhoff type problems in \(\mathbb {R}^{3}\). J Math Phys 2013;54:1–21.

    Article  MathSciNet  Google Scholar 

  21. Liang SH, Zhang JH. Multi-bump solutions for a class of Kirchhoff type problems with critical growth in \(\mathbb {R}^{N}\). Topol Methods Nonlinear Anal 2016;48:71–101.

    MathSciNet  MATH  Google Scholar 

  22. Liang SH, Wen LX, Zhang BL. Solutions for a class of quasilinear Choquard equations with Hardy-Littlewood-Sobolev critical nonlinearity. Nonlinear Anal 2020;198:111888.

    Article  MathSciNet  MATH  Google Scholar 

  23. Liang SH, Zhang BL. Soliton solutions for quasilinear Schrödinger equations involving convolution and critical nonlinearities. J Geom Anal 2022;9:32. https://doi.org/10.1007/s12220-021-00740-y.

    Article  Google Scholar 

  24. Liang SH, Song Y. Nontrivial solutions of quasilinear Choquard equation involving the p-Laplacian operator and critical nonlinearities. Differ Integr Equ 2022;35:359–70.

    MathSciNet  MATH  Google Scholar 

  25. Liang SH, Shi S. Soliton solutions to Kirchhoff type problems involving the critical growth in \(\mathbb {R}^n\). Nonlinear Anal 2013;81:31–41.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lieb EH, Loss M. Analysis, 2nd edn. RI: Graduate Studies in Mathematics, American Mathematical Society, Providence; 2001.

    MATH  Google Scholar 

  27. Litvak A, Sergeev A. One dimensional collapse of plasma waves. JETP Lett 1978;27:517–20.

    Google Scholar 

  28. Liu J, Wng Y, Wang ZQ. Soliton solutions to quasilinear Schrödinger equations II. J Differ Equ 2003;187:473–93.

    Article  Google Scholar 

  29. Severo U. Existence of weak solutions for quasilinear elliptic equations involving the p-Laplacian, electron. J Differ Equ 2008;2008:1–16.

    MathSciNet  MATH  Google Scholar 

  30. Song YQ, Shi SY. Existence and multiplicity results for a class of quasilinear Schrödinger equations in \(\mathbb {R}^{N}\) involving critical growth. Complex Var Elliptic Equ 2016;62:967–1001.

    Article  MATH  Google Scholar 

  31. Teng K, Yang X. Existence and concentration behavior of solutions for a class of quasilinear elliptic equations with critical growth. Adv Nonlinear Anal 2019;8:339–71.

    Article  MathSciNet  MATH  Google Scholar 

  32. Willem M. Minimax Theorems. Boston: Birkhäuser; 1996.

    Book  MATH  Google Scholar 

  33. Yang X, Zhang W, Zhao F. Existence and multiplicity of solutions for a quasilinear Choquard equation via perturbation method. J Math Phys 2018; 59:081503.

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang X, Tang X, Gu G. Multiplicity and concentration behavior of positive solutions for a generalized quasilinear Choquard equation. Complex Var Elliptic Equ 2020;65:1515–47.

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang X, Tang X, Gu G. Concentration behavior of ground states for a generalized quasilinear Choquard equation. Math Methods Appl Sci 2020; 43:3569–85.

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang W, Wu X. Existence, multiplicity, and concentration of positive solutions for a quasilinear Choquard equation with critical exponent. J Math Phys 2019;60:051501.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Z. Shi was supported by the Graduate Scientific Research Project of Changchun Normal University (SGSRPCNU [2022], Grant No. 055). S. Liang was supported by the Research Foundation of Department of Education of Jilin Province (Grant No. JJKH20230902KJ) and the Natural Science Foundation of Jilin Province (Grant No. YDZJ202201ZYTS582, 222614JC0106101856).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihua Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Huo, Y. & Liang, S. Multi-bump Solutions for the Quasilinear Choquard Equation in \(\mathbb {R}^{N}\). J Dyn Control Syst 29, 1357–1383 (2023). https://doi.org/10.1007/s10883-022-09634-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09634-w

Keywords

Mathematics Subject Classification (2010)

Navigation