Skip to main content
Log in

Chaos in One-dimensional Piecewise Smooth Dynamical Systems

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the family of one-dimensional piecewise smooth dynamical systems in which two classic theorems are still permanent. One of them is Birkhoff transitivity theorem and the other one is Banks, Brooks, Cairns, Davis, and Stacey theorem. Baker-like maps with N-branches (N ≥ 2) constitute an open subset of this family. We show that under certain conditions, a full chaos always occurs in the family of Baker-like maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Banerjee S, Verghese GC. Nonlinear phenomena in power electronics: attractors, bifurcations, chaos and nonlinear control. New York: Wiley-IEEE Press; 2001.

    Book  Google Scholar 

  2. Banks J, Brooks J, Grains G, Davis G, Stacey P. On Devaney’s definition of chaos. Amer Math Monthly 1992;99:332–4.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bischi GI, Chiarella C, Kopel M, Szidarovszky F. Nonlinear oligopolies: stability and bifurcations. Heidelberg: Springer; 2009.

    MATH  Google Scholar 

  4. Degirmenci N, Kocak S. Existence of a dense orbit and topological transitivity: when are they equivalent? Acta Math Hung 2003;99(3):185–7.

    Article  MathSciNet  MATH  Google Scholar 

  5. Devaney R. An introduction to chaotic dynamical systems. Addison-Wesley Studies in Nonlinearity. Redwood City: Addison-Wesley Publishing Company Advanced Book Program; 1989.

    Google Scholar 

  6. di Bernardo M, Budd CJ, Champneys AR. Grazing, skipping and sliding: analysis of the nonsmooth dynamics of the DC/DC buck converter. Nonlinearity 1998;11:858–90.

    Article  MATH  Google Scholar 

  7. di Bernardo M, Budd CJ, Champneys AR, Kowalczyk P. Piecewise-smooth dynamical systems: theory and applications, Applied Mathematical Sciences. Vol 163. London: Springer-Verlag; 2008.

    Google Scholar 

  8. Gardini L, Avrutin V, Sushko I, Tramontana F. 2019. Continuous and discontinuous piecewise-smooth one-dimensional maps: invariant sets and bifurcation structures, World scientific series on nonlinear science series a book 95.

  9. Gardini L, Makrooni R. Necessary and sufficient conditions of full chaos for expanding Baker-like maps and their use in non-expanding Lorenz maps. Commun Nonlinear Sci Numer Simul 2019;67:272–89.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gardini L, Sushko I, Avrutin V, Schanz M. Critical homoclinic orbits lead to snap-back repellers. Chaos Solit Fractals 2011;44:433–49.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gardini L, Sushko I, Naimzada A. Growing through chaotic intervals. J Econ Theory 2008;143:541–57.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gardini L, Tramontana F, Avrutin V, Schanz M. Border-collision bifurcations in 1D piecewise-linear maps and Leonov’s approach. Int J Bif Chaos 2010;20:3085–104.

    Article  MathSciNet  MATH  Google Scholar 

  13. Glendinning P. Topological conjugation of Lorenz maps by β −transformations. Math Proc Camb Phil Soc 1990;107:401–13.

    Article  MathSciNet  MATH  Google Scholar 

  14. Glendinning P, Hall T. Zeros of the kneading invariant and topological entropy for Lorenz maps. Nonlinearity 1996;9:999–1014.

    Article  MathSciNet  MATH  Google Scholar 

  15. Glendinning P, Sparrow C. Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps. Phys D 1993;62:22–50.

    Article  MathSciNet  MATH  Google Scholar 

  16. Grosse-Erdmann KG, Manguillot AP. Linear chaos. London: Springer-Verlag; 2011.

    Book  MATH  Google Scholar 

  17. Hofbauer F. The maximal measure for linear mod one transformations. J London Math Soc 1981;23:92–112.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kahng B. Redefining chaos: Devaney-chaos for piecewise continuous dynamical systems. Intl J Math Model Method Appl Sci 2009;3(4):317–26.

    Google Scholar 

  19. Kameyama A. Topological transitivity and strong transitivity. Acta Math. Univ. Comenianae 2002;LXXI(2):139–45.

    MathSciNet  MATH  Google Scholar 

  20. Makrooni R, Abbasi N, Pourbarat M, Gardini L. Robust unbounded chaotic attractors in 1D discontinuous maps. Chaos Solit Fractals 2015;77: 310–8.

    Article  MathSciNet  MATH  Google Scholar 

  21. Makrooni R, Gardini L. 2015. Bifurcation structures in a family of one-dimensional linear-power discontinuous maps. Gecomplexity Discussion Paper, 7. http://econpapers.repec.org/paper/cstwpaper/.

  22. Makrooni R, Khellat F, Gardini L. Border collision and fold bifurcations in a family of one-dimensional discontinuous piecewise smooth maps: divergence and bounded dynamics. J Differ Equ Appl 2015;21(9):660–95.

    Article  MathSciNet  MATH  Google Scholar 

  23. Makrooni R, Khellat F, Gardini L. Border collision and fold bifurcations in a family of one-dimensional discontinuous piecesiwe smooth maps: unbounded chaotic sets. J Differ Equ Appl 2015;21(9):791–824.

    Article  MATH  Google Scholar 

  24. Makrooni R, Pourbarat M, Abbasi N. Chaotic behaviour of baker-like maps with one discontinuity point. Proc. 51st annual Iranian math. conf.; 2021.

  25. Nordmark AB. Non-periodic motion caused by grazing incidence in an impact oscillator. J Sound Vib 1991;145:279–97.

    Article  Google Scholar 

  26. Oprocha P, Potorskia P, Raith P. Mixing properties in expanding Lorenz maps. Adv Math 2019;343:712–55.

    Article  MathSciNet  MATH  Google Scholar 

  27. Parry W. The Lorenz attractor and a related population model. Book: Ergodic theory, Lecture Notes in Mathematics. Berlin: Springer; 1979. p. 729.

  28. Peris A. Transitivity, dense orbit and discontinuous functions. Bull Belg Math Soc 1999;6:391–4.

    MathSciNet  MATH  Google Scholar 

  29. Piiroinen PT, Budd CJ. Corner bifurcations in non-smoothly forced impact oscillators. Phys D 2006;220:127–45.

    Article  MathSciNet  MATH  Google Scholar 

  30. Pourbarat M, Abbasi N, Makrooni R. Chaos in smooth piecewise dynamical systems with one discontinuous point. J Adv Math Model 2019;9(2):93–105.

    MATH  Google Scholar 

  31. Puu T, Sushko I. Oligopoly dynamics models and tools. New York: Springer Verlag; 2002.

    Book  MATH  Google Scholar 

  32. Rand D. The topological classification of Lorenz attractors. Math Proc Camb Phil Soc 1978;83:451–60.

    Article  MathSciNet  MATH  Google Scholar 

  33. To VD. A note on Devaney’s definition of chaos. J Dyn Syst Geom Theory 2013;2(1):23–26.

    MathSciNet  MATH  Google Scholar 

  34. Vellekoop M, Berglund R. On intervals, transitivity = chaos. Amer Math Monthly 1994;101:353–5.

    MathSciNet  MATH  Google Scholar 

  35. Wang X, Huang Y. Devaney chaos revisited. Topol Appl 2013; 160(3):455–60.

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhusubaliyev ZT, Mosekilde E. 2003. Bifurcations and chaos in piecewise-smooth dynamical systems, World Scientific Nonlinear Science Series a.

Download references

Acknowledgements

The second author would like to thank the assistance of Iran National Science Foundation (INSF) and Shahid Bahonar University of Kerman in supporting the postdoc program (Project Number: 96010976).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Makrooni.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourbarat, M., Abbasi, N., Makrooni, R. et al. Chaos in One-dimensional Piecewise Smooth Dynamical Systems. J Dyn Control Syst 29, 1271–1285 (2023). https://doi.org/10.1007/s10883-022-09630-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09630-0

Keywords

Mathematics Subject Classification (2010)

Navigation