Skip to main content
Log in

Exact Boundary Controllability of the Linear Biharmonic Schrödinger Equation with Variable Coefficients

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the exact boundary controllability of the linear fourth-order Schrödinger equation, with variable physical parameters and clamped boundary conditions on a bounded interval. The control acts on the first spatial derivative at the right endpoint. We prove that this control system is exactly controllable at any time \(T>0\). The proofs are based on a detailed spectral analysis and the use of nonharmonic Fourier series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali Mehmeti F, Ammari K, Nicaise S. Nicaise, Dispersive effects and high frequency behaviour for the Schrödinger equation in star-shaped networks. Portug Math. 2015;72:309–55.

    Article  MATH  Google Scholar 

  2. Ali Mehmeti F, Ammari K, Nicaise S. Dispersive effects for the Schrödinger equation on the tadpole graph. J Math Anal Appl. 2017;448:262–80.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ammari K, Assel R. Spectral analysis and stabilization of the dissipative Schrödinger operator on the tadpole graph, 2021. arXiv:2111.13227.

  4. Ammari K, Mercier D, Régnier V. Spectral analysis of the Schrödinger operator on binary tree-shaped networks and applications. Journal of Diff Equat. 2015;259:6923–59.

    Article  MATH  Google Scholar 

  5. Ammari K, Duca A. Controllability of localised quantum states on infinite graphs through bilinear control fields. Inter Jour Cont. 2021;94:1824–37.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ammari K, Duca A. Controllability of periodic bilinear quantum systems on infinite graphs. J Math Phys. 2020;61(10):101507, 15.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ammari K, Sabri M. Dispersion for Schrödinger operators on regular trees. Anal Math Phys; 2022. 12, no. 2, Paper No. 56.

  8. Ammari K, Choulli M, Robbiano L. Observability and stabilization of magnetic Schrödinger equations. J Diff Equat. 2019;267:3289–327.

    Article  MATH  Google Scholar 

  9. Ammari K, Bchatnia A, Mehenaoui N. Exponential stability for the nonlinear Schrödinger equation on a star-shaped network. Z Angew Math Phys. 2021;72:1–19.

    Article  MATH  Google Scholar 

  10. Aksas B, Rebiai SE. Uniform stabilization of the fourth order Schrödinger equation. J Math Anal Appl. 2017;446:1794–813.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben-Artzi A, Koch H, Saut JC. Dispersion estimates for fourth order Schrödinger equations. C R Acad Sci Paris Sér I Math. 2000;330:87–92.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ben Amara J, Bouzidi H. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evol Equat & Cont Theo. 2018;7:403–15.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ben Amara J, Bouzidi H. On the simplicity of eigenvalues of two nonhomogeneous Euler-Bernoulli beams connected by a point mass. J Diff Equat. 2019;267:2083–103.

    Article  MathSciNet  MATH  Google Scholar 

  14. Cui S, Guo C. Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces \(H^s(\mathbb{R}^n)\) and applications. Nonl Analy. 2007;67:687–707.

    Article  MATH  Google Scholar 

  15. Capistrano-Filho RA, Cavalcante M. Stabilization and Control for the Biharmonic Schrödinger Equation. Appl Math Optim. 2021;84:103–44.

    Article  MathSciNet  MATH  Google Scholar 

  16. Capistrano-Filho RA, Cavalcante M, Gallego FA. Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane. Pacif Journal of Math. 2020;309:35–70.

    Article  MATH  Google Scholar 

  17. Capistrano-Filho RA, Cavalcante M, Gallego FA. Forcing operators on star graphs applied for the cubic fourth order Schrödinger equation. Disc & Contin Dynam Syst -B; 2021. 1–36.

  18. Dáger R, Zuazua E. Wave propagation, observation and control in \(1-\)d flexible multi-structures, Vol. 50. Springer Science & Business Media; 2006.

  19. Fibich G. The nonlinear Schrödinger equation: singular solutions and optical collapse. Berlin: Springer; 2015.

  20. Fedoryuk MV. Asymptotic Analysis. Springer-Verlag; 1983

  21. Hansen S. Exact boundary controllability of a Schrödinger equation with an internal point mass. In: Amer. Cont. Conf. May 24–26, Seattle, USA; 2017. p. 3809–3814

  22. Gao P. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evol Equat & Cont Theo. 2018;7:465–99.

    Article  MATH  Google Scholar 

  23. Karpman VI. Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations. Phys Rev E. 1996;53:1336–9.

    Article  Google Scholar 

  24. Karpman VI, Shagalov AG. Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion. Physica D: Nonl Phen. 2000;144:194–210.

    Article  MATH  Google Scholar 

  25. Komornik V. Exact Controllability and Stabilization, the Multiplier Method, John Wiley-Masson; 1994

  26. Lions JL. Exact controllability, stabilization and perturbation for distributed systems. SIAM Rev. 1988;30:1–68.

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions JL. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1 and 2. RMA, Paris: Masson; 1988.

  28. Lions JL, Magenes E. Non-Homogeneous Boundary Value Problems and Applications. Berlin: Springer; 1972.

  29. Naimark MA. Linear differential operators, vol. 167. New York: Ungar; 2007.

  30. Pausader B. Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case. Dynamics of PDE. 2007;4:197–225.

    MathSciNet  MATH  Google Scholar 

  31. Pausader B. The cubic fourth-order Schrödinger equation. J Funct Anal. 2007;256:2473–517.

    Article  MathSciNet  MATH  Google Scholar 

  32. Wen R, Chai S, Guo BZ. Well-posedness and exact controllability of fourth order Schrödinger equation with boundary control and collocated observation. SIAM J Control Optim. 2014;52:365–96.

    Article  MathSciNet  MATH  Google Scholar 

  33. Wen R, Chai S, Guo BZ. Well-posedness and exact controllability of fourth-order Schrödinger equation with hinged boundary control and collocated observation. Math Cont Signa Syst. 2016;28:1–28.

    MATH  Google Scholar 

  34. Zheng C. Inverse problems for the fourth order Schrödinger equation on a finite domain. Math Cont & Relat Fields. 2015;5:177–89.

    Article  MATH  Google Scholar 

  35. Zheng C, Zhongcheng Z. Exact controllability for the fourth order Schrödinger Equation. Chin Ann Math. 2012;33:395–404.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for valuable suggestions and comments that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaïs Ammari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammari, K., Bouzidi, H. Exact Boundary Controllability of the Linear Biharmonic Schrödinger Equation with Variable Coefficients. J Dyn Control Syst 29, 703–719 (2023). https://doi.org/10.1007/s10883-022-09609-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09609-x

Keywords

Mathematics Subject Classification (2010)

Navigation