Skip to main content
Log in

Mean Li-Yorke Chaos and Mean Sensitivity in Non-autonomous Discrete Systems

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, mean Li-Yorke chaos and mean sensitivity are investigated in non-autonomous discrete systems \((X, f_{1, \infty })\), where \(f_{1, \infty } = \{f_{i}\}_{i \geq 1}\) is a sequence of self-maps on a metric space X. It is shown that mean Li-Yorke chaos is preserved under iteration for a non-autonomous discrete system with certain continuity. Moreover, sensitivity, Banach mean sensitivity and mean sensitivity of non-autonomous linear discrete systems are characterized, respectively. We provide sufficient conditions under which a mean sensitive non-autonomous discrete system is mean Li-Yorke chaotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balibrea F, Oprocha P. Weak mixing and chaos in non-autonomous discrete systems. Appl Math Lett 2012;25:1135–41.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayart F, Matheron É. Dynamics of linear operators. Cambridge: Cambridge University Press; 2009.

    Book  MATH  Google Scholar 

  3. Bernardes N C, Bonilla A, Müller V, Peris A. Distributional chaos for linear operators. J Funct Anal 2013;265:2143–63.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernardes N C, Bonilla A, Peris A, Wu X X. Distributional chaos for operators on Banach spaces. J Math Anal Appl 2018;459:797–821.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernardes NC, Bonilla A, Peris A. Mean Li-Yorke chaos in Banach spaces. J Funct Anal 2020;3:108343.

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchard F, Glasner E, Kolyada S, Maass A. On Li-Yorke pairs. J Reine Angew Math 2002;547:51–68.

    MathSciNet  MATH  Google Scholar 

  7. Coutinho F A B, Burattini M N, Lopez L F, Massad E. Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue. Bull Math Biol 2006;68(8):2263–82.

    Article  MathSciNet  MATH  Google Scholar 

  8. Downarowicz T. Positive topological entropy implies chaos DC2. Proc Am Math Soc 2014;142:137–49.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dvořáková J. On a problem of iteration invariants for distributional chaos. Commun Nonlin Sci Numer Simul 2012;17:785–7.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dvořáková J. Chaos in nonautonomous discrete dynamical systems. Commun Nonlin Sci Numer Simul 2012;17:4649–52.

    Article  MathSciNet  MATH  Google Scholar 

  11. Elaydi S N. Nonautonomous difference equations: open problems and conjectures. Fields Inst Commun 2004;42:423–8.

    MathSciNet  MATH  Google Scholar 

  12. Fomin S. On dynamical systems with a purely point spectrum. Dokl Akad Nauk SSSR 1951;77:29–32.

    MathSciNet  Google Scholar 

  13. García-Ramos F, Jin L. Mean proximality and mean Li-Yorke chaos. Proc Amer Math Soc 2017;145:2959–69.

    Article  MathSciNet  MATH  Google Scholar 

  14. García-Ramos F, Jäger T, Ye XD. Mean equicontinuity, almost automorphy and regularity. Isr J Math. 2021;1-29.

  15. Grosse-Erdmann K G, Peris A. Linear chaos. Berlin: Springer; 2011.

    Book  MATH  Google Scholar 

  16. Hantáková J. Iteration problem for distributional chaos. Int J Bifur Chaos 2017;27:1750183.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kostić M. Reiterative mn-distributional chaos of type s in fréchet Spaces. Bull Malays Math Sci Soc 2020;43: 3963–4005.

    Article  MathSciNet  MATH  Google Scholar 

  18. Li N, Wang LD. Sensitivity and chaoticity on nonautonomous dynamical systems. Int J Bifur Chaos 2020;30(10):2050146.

    Article  MathSciNet  MATH  Google Scholar 

  19. Li J, Ye X D. Recent development of chaos theory in topological dynamics. Acta Math Sin 2016;32:83–114.

    Article  MathSciNet  MATH  Google Scholar 

  20. Li T Y, Yorke J. Period three implies chaos. Am Math Mon 1975; 82:985–92.

    Article  MathSciNet  MATH  Google Scholar 

  21. Li J, Tu S M, Ye X D. Mean equicontinuity and mean sensitivity. Ergodic Theory Dynam Syst 2015;35:2587–612.

    Article  MathSciNet  MATH  Google Scholar 

  22. Li J, Oprocha P, Wu X X. Furstenberg families, sensitivity and the space of probability measures. Nonlinearity 2017;30:987–1005.

    Article  MathSciNet  MATH  Google Scholar 

  23. Li R S, Zhao Y, Wang H Q, Liang H H. Stronger forms of transitivity and sensitivity for nonautonomous discrete dynamical systems and Furstenberg families. J Dyn Control Syst 2020;26:109–26.

    Article  MathSciNet  MATH  Google Scholar 

  24. Li R S, Lu T X, Chen G R, Liu G. Some stronger forms of topological transitivity and sensitivity for a sequence of uniformly convergent continuous maps. J Math Anal Appl 2021;494:124443.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu T X, Chen GR. Proximal and syndetical properties in nonautonomous discrete systems. J Appl Anal Comput 2017;7:92–101.

    MathSciNet  MATH  Google Scholar 

  26. Luís R, Elaydi S, Oliveira H. Non-autonomous periodic systems with Allee effects. J Differ Equ Appl 2010;16(10):1179–96.

    Article  MathSciNet  MATH  Google Scholar 

  27. Martínez-Giménez F, Oprocha P, Peris A. Distributional chaos for operators with full scrambled sets. Math Z 2013;274:603–12.

    Article  MathSciNet  MATH  Google Scholar 

  28. Menet Q. Linear chaos and frequent hypercyclicity. Trans Amer Math Soc 2017;369:4977–94.

    Article  MathSciNet  MATH  Google Scholar 

  29. Miralles A, Murillo-Arcila M, Sanchis M. Sensitive dependence for nonautonomous discrete dynamical systems. J Math Anal Appl 2018;263: 268–75.

    Article  MathSciNet  MATH  Google Scholar 

  30. Moothathu T K S. Stronger forms of sensitivity for dynamical systems. Nonlinearity 2007;20:2115–26.

    Article  MathSciNet  MATH  Google Scholar 

  31. Murillo-Arcila M, Peris A. Mixing properties for nonautonomous linear dynamics and invariant sets. Appl Math Lett 2013;26:215–8.

    Article  MathSciNet  MATH  Google Scholar 

  32. Salman M, Das R. Multi-sensitivity and other stronger forms of sensitivity in non-autonomous discrete systems. Chaos Solitons Fractals 2018;115:341–8.

    Article  MathSciNet  MATH  Google Scholar 

  33. Salman M, Das R. Furstenberg family and multi-sensitivity in nonautonomous systems. J Differ Equ Appl 2019;25:1755–67.

    Article  MATH  Google Scholar 

  34. Schweizer B, Smítal J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans Am Math Soc 1994;344:737–54.

    Article  MathSciNet  MATH  Google Scholar 

  35. Shao H, Shi YM. Some weak versions of distributional chaos in non-autonomous discrete systems. Commun Nonlinear Sci Numer Simul 2019;70:318–25.

    Article  MathSciNet  MATH  Google Scholar 

  36. Shao H, Shi Y M, Zhu H. On distributional chaos in non-autonomous discrete systems. Chaos Soliton Fractals 2018;107:234–43.

    Article  MathSciNet  MATH  Google Scholar 

  37. Sharma P, Raghav M. On dynamics generated by a uniformly convergent sequence of maps. Topology Appl 2018;237:81–90.

    Article  MathSciNet  MATH  Google Scholar 

  38. Shi Y M, Chen GR. Chaos of time-varying discrete dynamical systems. J Differ Equ Appl 2009;15:429–49.

    Article  MathSciNet  MATH  Google Scholar 

  39. Vasisht R, Das R. On stronger forms of sensitivity in non-autonomous systems. Taiwan J Math 2018;22:1139–59.

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu X X, Chen GR. Answering two open problems on Banks theorem for non-autonomous dynamical systems. J Differ Equ Appl 2019;25:1790–4.

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu X X, Zhu P Y. On the equivalence of four chaotic operators. Appl Math Lett 2012;25:545–9.

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu X X, Zhu PY. Chaos in a class of non-autonomous discrete systems. Appl Math Lett 2013;26:431–6.

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu X X, Chen G R, Zhu P Y. Invariance of chaos from backward shift on the köthe sequence space. Nonlinearity 2014;27:271–88.

    Article  MathSciNet  MATH  Google Scholar 

  44. Ye X D, Huang W, Sao S. An introduction to topological dynamical systems. Beijing: Sci. Tec. Press; 2008.

    Google Scholar 

  45. Yin Z B, Huang Y. Remarks on multiples of distributionally chaotic operators. Studia Math 2018;243:25–52.

    Article  MathSciNet  MATH  Google Scholar 

  46. Yin Z B, Wei YC. Recurrence and topological entropy of translation operators. J Math Anal Appl 2018;460:203–15.

    Article  MathSciNet  MATH  Google Scholar 

  47. Yin Z B, He S N, Huang Y. On Li-Yorke and distributionally chaotic direct sum operators. Topology Appl 2018;239:35–45.

    Article  MathSciNet  MATH  Google Scholar 

  48. Yin Z B, Xiang Q M, Wu X X. Reiterative distributional chaos in non-autonomous discrete systems. Qual Theor Dyn Syst 2021;20(3):88.

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang Y, Gao S, Liu Y. Analysis of a nonautonomous model for migratory birds with saturation incidence rate. Commun Nonlinear Sci Numer Simul 2012; 17(4):1659–72.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for their valuable comments and suggestions.

Funding

This work was partly supported by the National Natural Science Foundation of China (No. 11701584, 11801096, 12101415) and Natural Science Research Project of Guangdong Province (No. 2017KQNCX122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongbin Yin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., He, S. & Chen, Z. Mean Li-Yorke Chaos and Mean Sensitivity in Non-autonomous Discrete Systems. J Dyn Control Syst 29, 245–262 (2023). https://doi.org/10.1007/s10883-022-09599-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09599-w

Keywords

Mathematics Subject Classification (2010)

Navigation