Skip to main content
Log in

Asymptotic Measure Expansive Flows

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we extend the notion of asymptotic measure expansivity for diffeomorphisms to flows on a compact metric space, and prove that there exists an asymptotic measure expansive flow in that space. Then we consider the hyperbolicity of the asymptotic measure expansive vector fields on a closed smooth Riemannian manifold M. More precisely, we prove that any C1 stably asymptotic measure expansive vector field on M satisfy Axiom A without cycles, and it is quasi-Anosov. On the other hand, we show that C1 generically, every asymptotic measure expansive vector field on M satisfies Axiom A without cycles. Moreover, we study the asymptotic measure expansivity of the homoclinic classes which are the delegate of the invariant subsets for given systems, prove that C1 stably and C1 generically, the asymptotic measure expansive homoclinic class is hyperbolic. Furthermore, we consider the hyperbolicity of asymptotic measure expansive divergence-free vector fields for C1 stably and C1 generic point of view. We also apply the our results to the divergence-free vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn J, Lee M, Oh J. Measure expansivity for C1-conservative systems. Chaos Solitons Fractals 2015;81:400–405.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arroyo A, Rodriguez Hertz F. Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows. Ann I H Poincaré 2003;AN 20, 5:805–841.

    MathSciNet  MATH  Google Scholar 

  3. Fakhari A, Morales CA, Tajbakhsh K. Asymptotic measure expansive diffeomorphisms. J Math Anal Appl 2016;435:1682–1687.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessa M. A generic incompressible flow is topological mixing. C R Math Acad Sci Paris 2008;346:1169–1174.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonatti C, Crovisier S. Récurrence et généricité. Invent Math 2004;158:180–193.

    Article  MATH  Google Scholar 

  6. Bowen R, Walters P. Expansive one-parameter flows. J Diff Eqns 1972;12:180–193.

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrasco-Olivera D, Morales CA. Expansive measures for flows. J Differ Equ 2014;256:2246–2260.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferreira C. Stability properties of divergence-free vector fields. Dyn Syst 2012;27:223–238.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferreira C. Shadowing, expansiveness and stability of divergence-free vector fields. Bull Korean Math Soc 2014;51:67–76.

    Article  MathSciNet  MATH  Google Scholar 

  10. Franks J. Necessary conditions for stability of diffeomorphisms. Trans Amer Math Soc 1971;158:301–308.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gan S, Wen L. Nonsingular star flows satisfy Axiom A and the no-cycle condition. Invent Math 2006;164:279–315.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hayashi S. Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows. Ann Math 1997;145:81–137.

    Article  MathSciNet  MATH  Google Scholar 

  13. Komuro M. 1984. Expansive properties of Lorenz attractors. The theory of dynamical systems and its applications to nonlinear problems, pp 4–26.

  14. Lee K, Lee M. Measure-expansive homoclinic classes. Osaka J Math 2016;53:873–887.

    MathSciNet  MATH  Google Scholar 

  15. Lee K, Oh J. Weak measure expansive flows. J Differ Equ 2016; 260:1078–1090.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee M. Asymptotic measure expansive diffeomorphisms. Open Math 2021;19:470–476.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee M. Robustly measure expansiveness for C1 generic vector fields. Quaest Math 2020;43:569–582.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee M. Continuum-wise expansiveness for generic diffeomorphisms. Nonlinearity 2018;31:2982–2988.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee M. Measure expansiveness for C1 generic diffeomorphisms. Dynam Syst Appl 2018;27:629–635.

    Google Scholar 

  20. Lee M. Weak measure expansiveness for partially hyperbolic diffeomorphisms. Chaos Solitons Fractals 2017;103:381–385.

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee M. Continuum-wise expansiveness for C1 generic vector fields. preprint.

  22. Lee M. Continuum-wise expansiveness for non-conservative or conservative systems. Chaos Solitons Fractals 2016;87:314–318.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee M. General expansiveness for diffeomorphisms from the robust and generic properties. J Dyn Control Syst 2016;22:459–464.

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee M. Continuum-wise expansive homoclinic classes for generic diffeomorphisms. Publ Math Derban 2016;88:193–200.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee M. Measure expansive homoclinic classes for generic diffeomorphisms. Appl Math Sci 2015;9:3623–3628.

    Google Scholar 

  26. Lee M, Oh J. Measure expansive flows for the generic view point. J Differ Equ Appl 2016;22:1005–1018.

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee M, Park J. Measure expansive symplectic diffeomorphisms and Hamiltonian systems. Int J Math 2016;27:1650077 [13 pages].

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee M, Oh J, Park J. 2022. Kinematic N expansive continuous dynamical systems. Rev Math Physics. 2022. https://doi.org/10.1142/S0129055X2250012X.

  29. Lee S, Park J. Expansive homoclinic classes of generic C1-vector fields. Acta Math Sin (Engl Ser) 2016;32:1451–1458.

    Article  MathSciNet  MATH  Google Scholar 

  30. Morales CA. Measure-expansive systems, preprint: IMPA Série D; 2011.

  31. Morales CA, Pacifico MJ, Pujals ER. Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann Math 2004;160: 375–432.

    Article  MathSciNet  MATH  Google Scholar 

  32. Moriyasu K, Sakai K, Sumi N. Vector fields with topological stability. Trans Amer Math Soc 2001;353:3391–3408.

    Article  MathSciNet  MATH  Google Scholar 

  33. Moriyasu K, Sakai K, Sun W. C1-stably expansive flows. J Diff Eqns 2005;213:352–367.

    Article  MATH  Google Scholar 

  34. Pugh C, Robinson C. The C1 closing lemma including Hamiltonians. Ergod Th Dynam Sys 1983;3:261–313.

    Article  MATH  Google Scholar 

  35. Ruggiero RO. Expansive dynamics and hyperbolic geometry. Bol Soc Brasil Mat (NS) 1994;25:139–172.

    Article  MathSciNet  MATH  Google Scholar 

  36. Senos L. Generic Bowen-expansive flows. Bull Braz Math Soc 2012; 43(1):59–71.

    Article  MathSciNet  MATH  Google Scholar 

  37. Utz WR. Unstable homeomorphisms. Proc Amer Math Soc 1950;1: 769–774.

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang X. Hyperbolicity versus weak periodic orbits inside homoclinic classes. Ergod Th Dynam Sys 2018;38:2345–2400.

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang D, Gan S. Expansive homoclinic classes. Nonlinearity 2009; 22(4):729–733.

    Article  MathSciNet  MATH  Google Scholar 

  40. Zuppa C. Regularisation \(C^{\infty }\) des champs vectoriels qui préservent l’elément de volume. Bol Soc Bras Mat 1979;10:51–56.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their appreciation to Professor Keonhee Lee for his valuable comments.

Funding

Manseob Lee is supported by NRF-2020R1F1A1A01051370. And Jumi Oh is supported by the National Research Foundation of Korea (NRF) grant funded by the MEST 2015R1A3A2031159 and NRF 2019R1A2C1002150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jumi Oh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Oh, J. Asymptotic Measure Expansive Flows. J Dyn Control Syst 29, 293–318 (2023). https://doi.org/10.1007/s10883-022-09598-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09598-x

Keywords

Mathematics Subject Classification (2010)

Navigation