Skip to main content
Log in

Exponential Dichotomy and Stable Manifolds for Differential-Algebraic Equations on the Half-Line

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We study linear and semi-linear differential-algebraic equations (DAEs) on the half-line \(\mathbb {R}_{+}\). In our strategy, we first show a characterization for the existence of exponential dichotomy for linear DAEs based on the Lyapunov-Perron method. Then, we prove the existence of invariant stable manifolds for semi-linear DAEs in the case that the evolution family corresponding to a linear DAE admits an exponential dichotomy and the non-linear forcing function fulfills the non-uniform φ-Lipschitz condition where the Lipschitz function φ belongs to wide classes of admissible function spaces such as Lp, \(1\leq p \leq \infty \), and Lp,q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Biegler LT, Campbell SL, Mehrmann V (eds.) 2012. Control and optimization with differential-algebraic constraints. SIAMPub, Philadelphia, PA.

  2. Kunkel P, Mehrmann V. Differential-algebraic equations – analysis and numerical solution. Zürich, Switzerland: EMS Publishing House; 2006.

    Book  MATH  Google Scholar 

  3. Lamour R, März R, Tischendorf C. 2013. Differential-algebraic equations: a projector based analysis. Differential-Algebraic Equations Forum 1. Berlin: Springer.

  4. Ilchmann A, Reis T. 2013. Surveys in differential-algebraic equations i. Differential-Algebraic Equations Forum, Springer.

  5. Lentini M, Marz R. Conditioning and dichotomy in differential algebraic equations. SIAM J Numer Anal 1990;27(6):1519–1526.

    Article  MathSciNet  MATH  Google Scholar 

  6. Masarati P. Estimation of Lyapunov exponents from multibody dynamics in differential-algebraic form. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 2013;227(1):23–33. https://doi.org/10.1177/1464419312455754.

    Google Scholar 

  7. Masarati P, Tamer A. Sensitivity of trajectory stability estimated by Lyapunov characteristic exponents. Aerosp Sci Technol 2015;47:501–510. https://doi.org/10.1016/j.ast.2015.10.015.

    Article  Google Scholar 

  8. Linh VH, Mehrmann V. Lyapunov, Bohl and Sacker-Sell spectral intervals for differential-algebraic equations. J Dyn Diff Equat 2009;21(1):153–194. https://doi.org/10.1007/s10884-009-9128-7.

    Article  MathSciNet  MATH  Google Scholar 

  9. Berger T. Bohl exponent for time-varying linear differential-algebraic equations. Int J Control 2012;85(10):1433–1451. https://doi.org/10.1080/00207179.2012.688872.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chyan C-J, Du NH, Linh VH. On data-dependence of exponential stability and stability radii for linear time-varying differential-algebraic systems. Journal of Differential Equations 2008;245(8):2078–2102. https://doi.org/10.1016/j.jde.2008.07.016.

    Article  MathSciNet  MATH  Google Scholar 

  11. Du NH, Linh VH. Stability radii for linear time-varying differential?algebraic equations with respect to dynamic perturbations. Journal of Differential Equations 2006;230(2):579–599. https://doi.org/10.1016/j.jde.2006.07.004https://doi.org/10.1016/j.jde.2006.07.004.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. D. 2018. Semilinear evolution equations and their applications. Springer, Cham.

  13. Du NH, Linh VH, Nga NTT. On stability and bohl exponent of linear singular systems of difference equations with variable coefficients. Journal of Difference Equations and Applications 2016;22(9):1350–1377. https://doi.org/10.1080/10236198.2016.1198341.

    Article  MathSciNet  MATH  Google Scholar 

  14. Thuan DD, Nguyen KC, Ha NT, Quoc PV. On stability, Bohl exponent and Bohl? Perron theorem for implicit dynamic equations. Int J Control 2020;0(0):1–13. https://doi.org/10.1080/00207179.2020.1774078https://doi.org/10.1080/00207179.2020.1774078.

    MATH  Google Scholar 

  15. Trostorff S, Waurick M. On differential?algebraic equations in infinite dimensions. Journal of Differential Equations 2019;266(1):526–561. https://doi.org/10.1016/j.jde.2018.07.051.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sviridyuk GA, Fedorov VE. 2003. Linear Sobolev type equations and degenerate semigroups of operators. Inverse and ill-posed problems series, De Gruyter.

  17. Zagrebina, Sukacheva, Sviridyuk. The multipoint initial-final value problems for linear Sobolev-type equations with relatively p-sectorial operator and additive “noise”. Global and Stochastic Analysis 2018;5(2):125–138.

    Google Scholar 

  18. Daleckii JL, Krein MG. 2002. Stability of solutions of differential equations in banach space. Translations of mathematical monographs, American Mathematical Society.

  19. Chicone C. 2013. Ordinary differential equations with applications. Texts in Applied Mathematics, Springer New York.

  20. Zhikov VV. On the theory of admissibility of pairs of function spaces. Soviet Math. Dokl. 1972;13(4):1108–1111.

    Google Scholar 

  21. Huy NT. Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line. J Funct Anal 2006;235(1):330–354. https://doi.org/10.1016/j.jfa.2005.11.002.

    Article  MathSciNet  MATH  Google Scholar 

  22. Huy NT. Invariant manifolds of admissible classes for semi-linear evolution equations. Journal of Differential Equations 2009;246(5):1820–1844. https://doi.org/10.1016/j.jde.2008.10.010.

    Article  MathSciNet  MATH  Google Scholar 

  23. Pazy A. 2012. Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, Springer New York.

  24. Dieci L, Eirola T. On smooth decompositions of matrices. SIAM Journal on Matrix Analysis and Applications 1999;20:800–819.

    Article  MathSciNet  MATH  Google Scholar 

  25. Massera JL, Schäffer JJ. 1966. Linear differential equations and function spaces. Pure and applied mathematics, Academic Press.

  26. Räbiger F, Schnaubelt R. The spectral mapping theorem for evolution semigroups on spaces of vector-valued functions. Semigroup Forum 1996;52 (1):225–239. https://doi.org/10.1007/BF02574098.

    Article  MathSciNet  MATH  Google Scholar 

  27. Triebel H. 1978. Interpolation theory, function spaces, differential operators. Carnegie-Rochester Conference Series on Public Policy, North-Holland Publishing Company.

  28. Lindenstrauss J, Tzafriri L. 2013. Classical banach spaces ii: function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, Springer Berlin Heidelberg.

  29. Coppel WA. 1978. Dichotomies in Stability Theory. Springer, New York, NY.

  30. Minh NV, Wu J. Invariant manifolds of partial functional differential equations. Journal of Differential Equations 2004;198(2):381–421. https://doi.org/10.1016/j.jde.2003.10.006.

    Article  MathSciNet  MATH  Google Scholar 

  31. Nguyen TH. Stable manifolds for semi-linear evolution equations and admissibility of function spaces on a half-line. J Math Anal Appl 2009;354(1):372–386. https://doi.org/10.1016/j.jmaa.2008.12.062.

    Article  MathSciNet  MATH  Google Scholar 

  32. Grossmann C, Roos HG, Stynes M. 2007. Numerical treatment of partial differential equations. Springer-Verlag Berlin Heidelberg.

  33. Emmrich E, Mehrmann V. Operator differential-algebraic equations arising in fluid dynamics. Computational Methods in Applied Mathematics 2013;13(4):443–470. https://doi.org/10.1515/cmam-2013-0018.

    Article  MathSciNet  MATH  Google Scholar 

  34. Altmann R, Heiland J. Continuous, semi-discrete, and fully discretised navier-stokes equations. Applications of Differential-Algebraic Equations: Examples and Benchmarks. In: Campbell S, Ilchmann A, Mehrmann V, and Reis T, editors. Cham: Springer International Publishing; 2019. p. 277–312. https://doi.org/10.1007/11221_2018_2.

  35. Riaza R. A matrix pencil approach to the local stability analysis of non-linear circuits. IJCTA 2004;32:23–46.

    MATH  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their careful reading and insightful assessment of our work.

Funding

The first author is financially supported by the Vietnam National University (Hanoi) under the research project QG 21.03. The second author is financially supported by the Vietnam National Foundation for Science and Technology Development under Grant No. 101.02-2021.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thieu Huy Nguyen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, P., Nguyen, T.H. Exponential Dichotomy and Stable Manifolds for Differential-Algebraic Equations on the Half-Line. J Dyn Control Syst 29, 475–500 (2023). https://doi.org/10.1007/s10883-022-09596-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09596-z

Keywords

Navigation