Skip to main content
Log in

Shadowing Property of Hyperspace for Free Semigroup Actions

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we introduce a notion of shadowing property for a free semigroup action on a compact metric space, which is different of the notion of the shadowing property introduced by Bahabadi, called chain shadowing property. We study the relation between the shadowing property of a free semigroup action on a compact metric space X and the shadowing property of the induced free semigroup action on the hyperspace 2X. Specially, we not only theoretically prove that \((F_{m}^{+},\mathcal {F})\curvearrowright X\) has the (chain) shadowing property if and only if \((F_{m}^{+},\mathcal {F})\curvearrowright 2^{X}\) has the (chain) shadowing property, but also give examples to illustrate it. Finally, we compare the two notions of shadowing for free semigroup actions and obtain an interesting result that if \((F_{m}^{+},\mathcal {F})\curvearrowright X\) has the shadowing property, then it has the chain shadowing property, but not vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barzanouni A. Weak Shadowing for Actions of Some Finitely Generated Groups on Non-compact Spaces and Related Measures. J Dyn Control Syst 2021; 27:507–530.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer W., Sigmund K. Topological dynamics of transformations induced on the space of probability measures. Monatsh Math 1975;79:81–92.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bahabadi A. Z. Shadowing and average shadowing properties for iterated function systems. Georgian Math J 2015;22:238–240.

    Article  MathSciNet  MATH  Google Scholar 

  4. Banks J. Chaos for induced hyperspace maps. Chaos, Solitons & Fractals 2005;25(3):681–685.

    Article  MathSciNet  MATH  Google Scholar 

  5. Blank M. Ergodic Theory and Dynamical Systems. Metric properties of ε-trajectories of dynamical systems with stochastic behaviour 1988;3:365–378.

    MATH  Google Scholar 

  6. Carvalho M., Rodrigues F. B., Varandas P. Quantitativerecurrence for free semigroup actions. Nonlinearity 2018;31(3):864.

    Article  MathSciNet  MATH  Google Scholar 

  7. Femández L., Good C. Shadowing for induced maps of hyperspaces. Fundam Math 2003;179:29–31.

    Google Scholar 

  8. Fernández L., Good C., Puljiz M., et al. Chain transitivity in hyperspaces. Chaos, Solitons & Fractals 2015;81:83–90.

    Article  MathSciNet  MATH  Google Scholar 

  9. Glasner E., Weiss B. Quasi-factors of zero-entropy sysytems. J. Amer. Math. Soc. 1995;8:665–686.

    MathSciNet  MATH  Google Scholar 

  10. Gómez Rueda J. L., Illanes A., Mendez H. Dynamic properties for the induced maps in the symmetric products. Chaos, Solitons & Fractals 2012; 45:9–10.

    Article  MathSciNet  Google Scholar 

  11. Hui H., Ma. D. Some dynamical properties for free semigroup actions. Stochastics and Dynamics 2018;18(04):1850032.

    Article  MathSciNet  MATH  Google Scholar 

  12. Illanes A., Nadler Jr. S. Hyperspaces: Fundamentals and recent advances. Monographs and Textbooks in Pure and Applied Mathmatics, vol. 216. New York: Marcel Dekker, Inc.; 1999.

    Google Scholar 

  13. Iglesias J., Portela A. Shadowing property for the free group acting in the circle. Dyn Syst 2020;35(1):111–123.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ji Y., Chen E., Zhou X. 2020. Entropy and Emergence of Topological Dynamical Systems. arXiv.

  15. Kwietniak D., Oprocha P. Topological entropy and chaos for maps induced on hyperspaces. Chaos Solitons & Fractals 2007;33(1):76–86.

    Article  MathSciNet  MATH  Google Scholar 

  16. Li J., Oprocha P., Ye X. When are all closed subsets recurrent? Ergodic Theory Dyn Syst 2017;37(7):2223–2254.

    Article  MathSciNet  MATH  Google Scholar 

  17. Maria C., Rodrigues F. B., Paulo V. A variational principle for free semigroup actions. Adv Math 2018;334:450–487.

    Article  MathSciNet  MATH  Google Scholar 

  18. Munkres J. 2000. Topology, Second Edition. Upper Saddle River: Prentice Hall;

  19. Sergío M. Topics on Continua II. New York: Springer International Publishing; 2018.

    MATH  Google Scholar 

  20. Nadler Jr S. Continuum theory. An introduction. Monographs and Textbooks in Pure and Applied Mathmatics, vol. 158. New York: Marcel Dekker, Inc.; 1992.

  21. Osipov A.V., Tikhomirov S.B. Shadowing for actions of some finitely generated groups. Dyn Syst 2014;29(3):337–351.

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu L., Ma D. Topological R-entropy and topological entropy of free semigroup actions. J Math Anal Appl 2019;470:1050–1069.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research was supported by NSF of China (No. 11671057) and NSF of Chongqing (Grant No. cstc2020jcyj-msxmX0694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wang, X. & Qiu, L. Shadowing Property of Hyperspace for Free Semigroup Actions. J Dyn Control Syst 29, 501–519 (2023). https://doi.org/10.1007/s10883-022-09595-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09595-0

Keywords

Mathematics Subject Classification (2010)

Navigation