Skip to main content
Log in

Practical Stability with Respect to a Part of the Variables of Stochastic Differential Equations Driven by G-Brownian Motion

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, practical stability with respect to a part of the variables of stochastic differential equations driven by G-Brownian motion (G-SDEs) is studied. The analysis of the global practical uniform p th moment exponential stability, as well as the global practical uniform exponential stability with respect to a part of the variables of G-SDEs, is investigated by means of the G-Lyapunov functions. An illustrative example to show the usefulness of the practical stability with respect to a part of the variables notion is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai X, Lin Y. On the existence and uniqueness of solutions to stochastic differential equations driven by G-Brownian motion with integral-Lipschitz coefficients. Acta Math Appl Sin Engl Ser 2010;30:589–610.

    Article  MathSciNet  MATH  Google Scholar 

  2. BenAbdallah A, Ellouze I, Hammami M A. Practical stability of nonlinear time-varying cascade systems. J Dyn Control Syst 2009;15:45–62.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Hamed B, Ellouze I, Hammami M A. Practical uniform stability of nonlinear differential delay equations. Mediterr J Math 2011;8:603–16.

    Article  MathSciNet  MATH  Google Scholar 

  4. Caraballo T, Garrido-Atienza M J, Real J. Asymptotic stability of nonlinear stochastic evolution equations. Stoch Anal Appl 2003;21:301–27.

    Article  MathSciNet  MATH  Google Scholar 

  5. Caraballo T, Garrido-Atienza M J, Real J. Stochastic stabilization of differential systems with general decay rate. Syst Control Lett 2003;48: 397–406.

    Article  MathSciNet  MATH  Google Scholar 

  6. Caraballo T, Hammami M A, Mchiri L. On the practical global uniform asymptotic stability of stochastic differential equations. Stochastics–An International Journal of Probability and Stochastic Processes 2016;88:45–56.

    Article  MathSciNet  MATH  Google Scholar 

  7. Caraballo T, Ezzine F, Hammami M, Mchiri L. Practical stability with respect to a part of variables of stochastic differential equations. Stochastics—An International Journal of Probability and Stochastic Processes 2020;6:1–18.

    MATH  Google Scholar 

  8. Caraballo T, Ezzine F, Hammami M. Partial stability analysis of stochastic differential equations with a general decay rate. J Eng Math 2021;130(4):1–17.

    MathSciNet  MATH  Google Scholar 

  9. Corless M. Guaranteed rates of exponential convergence for uncertain systems. J Optim Theory Appl 1990;64:481–94.

    Article  MathSciNet  MATH  Google Scholar 

  10. Denis L, Hu M, Peng S. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion path. Potential Anal 2010; 34:139–61.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao F. Pathwise properties and homomorphic flows for stochastic differential equations driven by G-Brownian motion. Stoch Process Appl 2009;119: 3356–82.

    Article  MATH  Google Scholar 

  12. Ignatyev O. Partial asymptotic stability in probability of stochastic differential equations. Stat Probab Lett 2009;79:597–601.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ignatyev O. New criterion of partial asymptotic stability in probability of stochastic differential equations. Appl Math Comput 2013;219:10961–6.

    MathSciNet  MATH  Google Scholar 

  14. Li X, Peng S. Stopping times and related g-itô calculus with G-Brownian motion. Stoch Process Appl 2009;121:1492–508.

    Article  MATH  Google Scholar 

  15. Li X, Lin X, Lin Y. Lyapunov-type conditions and stochastic differential equations driven by G-Brownian motion. Math Anal Appl 2016;439:235–55.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin Q. Some properties of stochastic differential equations driven by G-Brownian motion. Acta Math Sin 2013;29:923–42.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin Y. Stochastic differential eqations driven by G-Brownian motion with reflecting boundary. Electron J Probab 2013;18:1–23.

    Article  MathSciNet  Google Scholar 

  18. Luo P, Wang F. Stochastic differential equations driven by G-Brownian motion and ordinary differential equations. Stoch Process Appl 2014;124:3869–85.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mao X. Stochastic differential equations and applications. Chichester: Ellis Horwood; 1997.

    MATH  Google Scholar 

  20. Sontag E. Input to state stability: basic concepts and results. https://doi.org/10.1007/978-3-540-77653-6_3. In book: Nonlinear and optimal control theory.

  21. Sontag E, Wang Y. On characterizations of input-to-state stability with respect to compact sets. IFAC Nonlinear Control Systems Design, Tahoe City; 1995.

  22. Peng S. Nonlinear expectations and stochastic calculus under uncertaintly-with robust central limit theorem and G-Brownian motion. Berlin: Springer; 2010.

    Google Scholar 

  23. Peiffer K, Rouche N. Liapunov’s second method applied to partial stability. J Mec 1969;2:323–34.

    MathSciNet  MATH  Google Scholar 

  24. Peng S. G-expectation, G-Brownian motion and related stochastic calculus of itô’s type. 2006. arXiv:math.PR/0601035v1.

  25. Peng S. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stoch Process Appl 2008;118:223–5.

    Article  MathSciNet  Google Scholar 

  26. Pham Q C, Tabareau N, Slotine J E. A contraction theory approach to stochastic incremental stability. IEEE Trans Autom Control 2009;54: 1285–90.

    MathSciNet  MATH  Google Scholar 

  27. Rouche N, Habets P, Lalog M. Stability theory by liapunov’s direct method. New York: Springer; 1977.

    Book  MATH  Google Scholar 

  28. Rymanstev V V. On the stability of motions with respect to part of variables. Mosc Univ Math Bull 1957;4:9–16.

    Google Scholar 

  29. Rumyantsev V V, Oziraner A S. Partial stability and stabilization of motion. Moscow (in Russian): Nauka; 1987.

    MATH  Google Scholar 

  30. Savchenko AYa, Ignatyev O. 1989. Some Problems of Stability Theory. Naukova Dumka Kiev (in Russian).

  31. Vorotnikov V I. Partial stability and control. Boston: Birkhäuser; 1998.

    MATH  Google Scholar 

  32. Vorotnikov V I, Rumyantsev V V. Stability and control with respect to a part of the phase coordinates of dynamic systems: theory, methods, and applications. Moscow (in Russian): Scientific World; 2001.

    MATH  Google Scholar 

  33. Zhang D, Chen Z. Exponential stability for stochastic differential equation driven by G-Brownian motion. Appl Math Lett 2012;25:1906–10.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewer for valuable comments and suggestions, which allowed us to improve the paper.

Funding

The research of Tomás Caraballo has been partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under the project PGC2018-096540-B-I00, and by Junta de Andalucía (Consejería de Economía y Conocimiento) and FEDER under projects US-1254251 and P18-FR-4509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ali Hammami.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caraballo, T., Ezzine, F. & Hammami, M.A. Practical Stability with Respect to a Part of the Variables of Stochastic Differential Equations Driven by G-Brownian Motion. J Dyn Control Syst 29, 1–19 (2023). https://doi.org/10.1007/s10883-022-09593-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09593-2

Keywords

Mathematics Subject Classification (2010)

Navigation