Skip to main content
Log in

On Clusters and the Multi-isoperimetric Profile in Riemannian Manifolds with Bounded Geometry

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

For a complete Riemannian manifold with bounded geometry, we prove a generalized compactness theorem for sequences of clusters (with uniformly bounded perimeter and volume) in a larger space obtained by adding at most countable many limit manifolds at infinity, in the spirit of Muñoz Flores and Nardulli (Journal of Dynamical and Control Systems 1–11, 2020). The arguments presented in the proof of this generalized compactness theorem when applied to minimizing sequences of clusters give a generalized existence theorem for isoperimetric clusters in a larger space obtained by adding, in this case, only finitely many limit manifolds at infinity, as in Nardulli (Asian J Math 18(1):1–28, 2014). To achieve this goal, we show that isoperimetric clusters are bounded and also we prove the continuity of the multi-isoperimetric profile. In fact, we prove a stronger continuity property that is the Hölder continuity of the multi-isoperimetric profile. The multi-isoperimetric profile has been introduced recently in Milman and Neeman (2018) in the context of smooth metric measured spaces with a Gaussian-weighted notion of perimeter. This work generalizes to the context of Riemannian isoperimetric clusters some previous results about the classical Riemannian and sub-Riemannian isoperimetric problem, see Galli and Ritoré (Jour Math Anal Applic, 2012), Morgan (Trans Amer Math Soc 355(12), 2003), Mondino and Nardulli (Commun Anal Geom, 24(1):115–138, 2016), Nardulli (Glob Anal Geom, 36(2):111–131, 2009), Nardulli (Asian J Math 18(1):1–28, 2009), and Nardulli Bull Braz Math Soc (N.S.) 49(2):199–260, 2018), as well as results from clusters theory in the Euclidean setting, see Maggi (2012) and Morgan (Math Ann 299:697–714, 1994). In particular, as a consequence of our generalized existence results, we prove an existence theorem (in the classical sense) for isoperimetric clusters in a quite large class of noncompact Riemannian manifolds (the same considered in Mondino and Nadulli (Commun Anal Geom 24(1):115–138, 2016)) which includes, for instance, the space forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli G, Bruè E, Fogagnolo M, Pozzetta M. 2021. On the existence of isoperimetric regions in manifolds with nonnegative ricci curvature and euclidean volume growth. arXiv:2107.07318.

  2. Ambrosio L, Brué E, Semola D. Rigidity of the 1-bakry–émery inequality and sets of finite perimeter in rcd spaces. Geom Funct Anal 2019;29(4): 949–1001.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio L, Fusco N, Pallara D. 2000. Functions of bounded variation and free discontinuity problems, volume 254 Clarendon Press Oxford.

  4. Antonelli G, Fogagnolo M, Pozzetta M. 2021. The isoperimetric problem on riemannian manifolds via gromov-hausdorff asymptotic analysis.

  5. Ambrosio L, Gigli N, Mondino A, Rajala T. Riemannian ricci curvature lower bounds in metric measure spaces with σ-finite measure. Trans Am Math Soc 2015;367(7):4661–4701.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio L, Gigli N, Savaré G . Metric measure spaces with riemannian ricci curvature bounded from below. Duke Math J 2014;163(7):1405–1490.

    Article  MathSciNet  MATH  Google Scholar 

  7. Almgren Jr. FJ. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem Amer Math Soc 1976;4(165): viii+ 199.

    MathSciNet  MATH  Google Scholar 

  8. Ambrosio L, flow heat. Calculus, heat flow and curvature-dimension bounds in metric measure spaces. Proceedings of the international congress of mathematicians: Rio de Janeiro 2018, p.301–340. World Scientific; 2018.

  9. Michael TA. Hausdorff perturbations of ricci-flat manifolds and the splitting theorem. Duke Math J 1992;68(1):67–82.

    MathSciNet  MATH  Google Scholar 

  10. Antonelli G, Pasqualetto E, Pozzetta M. 2021. Isoperimetric sets in spaces with lower bounds on the ricci curvature.

  11. Bayle V. A differential inequality for the isoperimetric profile. Int Math Res Not 2004;2004(7):311–342.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bruè E, Pasqualetto E, Semola D. 2019. Rectifiability of the reduced boundary for sets of finite perimeter over rcd (k,n) spaces. arXiv:1909.00381.

  13. Cheeger J, Anderson M. Cα-compactness for manifolds with ricci curvature and injectivity radius bounded below. J Differential Geom 1992;35(2):265–281.

    MathSciNet  MATH  Google Scholar 

  14. Cheeger Jeff, Colding TH. On the structure of spaces with ricci curvature bounded below. i. J. Differential Geom 1997;46(3):406–480.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheeger J, Colding TH. On the structure of spaces with ricci curvature bounded below. II. J. Differential Geom 2000;54(1):13–35.

    MathSciNet  MATH  Google Scholar 

  16. Cheeger J, Colding TH. On the structure of spaces with ricci curvature bounded below. iii. J. Differential Geom 2000;54(1):37–74.

    MathSciNet  MATH  Google Scholar 

  17. Colombo M, Maggi F. Existence and almost everywhere regularity of isoperimetric clusters for fractional perimeters. Nonlinear Anal 2017;153:243–274.

    Article  MathSciNet  MATH  Google Scholar 

  18. Colding TH. Ricci curvature and volume convergence. Ann Math 1997;145(3):477–501.

    Article  MathSciNet  MATH  Google Scholar 

  19. Canete A, Ritoré M. The isoperimetric problem in complete annuli of revolution with increasing gauss curvature. Proc Royal Society Edinburgh 2008;138(5): 989–1003.

    Article  MathSciNet  MATH  Google Scholar 

  20. De Philippis G, Gigli N. Non-collapsed spaces with ricci curvature bounded from below. Journal de l’École polytechnique Mathématiques 2018;5:613–650.

    Article  MathSciNet  MATH  Google Scholar 

  21. Flores AM, Nardulli S. 2014. Continuity and differentiability properties of the isoperimetric profile in complete noncompact riemannian manifolds with bounded geometry. arXiv:1404.3245.

  22. Flores AEM, Nardulli S. 2020. Generalized compactness for finite perimeter sets and applications to the isoperimetric problem. Journal of Dynamical and Control Systems, p. 1–11.

  23. Giusti E. 1984. Minimal surfaces and functions of bounded variation birkhäuser: Verlag, Berlin.

  24. Galli M, Ritoré M. 2012. Existence of isoperimetric regions in contact sub-Riemannian manifolds. Jour. Math. Anal. Applic.

  25. Gromov M. Sign and geometric meaning of curvature. Rendiconti del Seminario Matematico e Fisico di Milano 1991;61(1):9–123.

    Article  MathSciNet  MATH  Google Scholar 

  26. Hebey M. 2000. Non linear analysis on manifolds: Sobolev spaces and inequalities, volume 5 of Lectures notes. AMS-Courant Inst. Math. Sci.

  27. Hirsch J, Marini M. Lower bound for the perimeter density at singular points of a minimizing cluster in rn. ESAIM: Control Optim Calc Var 2020;26:1.

    MathSciNet  MATH  Google Scholar 

  28. Miranda Jr M, Pallara D, Paronetto F, Preunkert M. Heat semigroup and functions of bounded variation on Riemannian manifolds. J Reine Angew Math 2007;613:99–119.

    MathSciNet  MATH  Google Scholar 

  29. Maggi M. 2012. Sets of finite perimeter and geometric variational problems, volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge university press, Cambridge. An introduction to geometric measure theory.

  30. Morgan F, Johnson DL. Some sharp isoperimetric theorems for Riemannian manifolds. Indiana Univ Math J 2000;49(2):1017–1041.

    MathSciNet  MATH  Google Scholar 

  31. Mondino A, Nardulli S. Existence of isoperimetric regions in non-compact riemannian manifolds under ricci or scalar curvature conditions. Commun Anal Geom 2016;24(1):115–138.

    Article  MathSciNet  MATH  Google Scholar 

  32. Milman Emanuel, Neeman Joe. 2018. The gaussian multi-bubble conjecture. arXiv:1805.10961.

  33. Flores AEM, Nardulli S. Local hölder continuity of the isoperimetric profile in complete noncompact riemannian manifolds with bounded geometry. Geom Dedicata 2019;201(1):1–12.

    Article  MathSciNet  MATH  Google Scholar 

  34. Morgan F. Clusters minimizing area plus length of singular curves. Math Ann 1994;299:697–714.

    Article  MathSciNet  MATH  Google Scholar 

  35. Morgan F. 2003. Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans Amer Math Soc, 355(12).

  36. Morgan F. 2009. Geometric measure theory: a beginner’s guide. Academic Press fourth edition.

  37. Nardulli Stefano. The isoperimetric profile of a smooth riemannian manifold for small volumes. Ann Glob Anal Geom 2009;36(2):111–131.

    Article  MathSciNet  MATH  Google Scholar 

  38. Nardulli S. Generalized existence of isoperimetric regions in non-compact riemannian manifolds and applications to the isoperimetric profile. Asian J Math 2014; 18(1):1–28.

    Article  MathSciNet  MATH  Google Scholar 

  39. Nardulli S. Regularity of isoperimetric regions that are close to a smooth manifold. Bull Braz Math Soc (N.S.) 2018;49(2):199–260.

    Article  MathSciNet  MATH  Google Scholar 

  40. Nardulli S, Pansu P. A complete Riemannian manifold whose isoperimetric profile is discontinuous. Ann Sc Norm Super Pisa Cl Sci (5) 2018;18(2): 537–549.

    MathSciNet  MATH  Google Scholar 

  41. Pittet C h, et al. The isoperimetric profile of homogeneous riemannian manifolds. J Differ Geom 2000;54(2):255–302.

    Article  MathSciNet  MATH  Google Scholar 

  42. Petersen P. Riemannian metrics. Riemannian Geometry, pages 1–39. Springer; 2016.

  43. Ritoré M. The isoperimetric problem in complete surfaces with nonnegative curvature. J Geom Anal 2001;11(3):509–517.

    Article  MathSciNet  MATH  Google Scholar 

  44. Ritoré M, Rosales C. Existence and characterization of regions minimizing perimeter under a volume constraint inside euclidean cones. Trans Amer Math Soc 2004;356(11):4601–4622.

    Article  MathSciNet  MATH  Google Scholar 

  45. Scattaglia V. A formula for the minimal perimeter of clusters with density. http://rendiconti.math.unipd.it/forthcoming/downloads/Scattaglia2021.pdf..

Download references

Acknowledgements

This article is part of my Ph.D thesis written under the advising of Stefano Nardulli. I would like to give a special thanks to Stefano Nardulli, for his enthusiasm with the project, and for bringing my attention to the subject of this paper. The discussions and encouragements of my co-advisor, Glaucio Terra, were very valuable for this work. I also show appreciation to Frank Morgan for his edits of the original text.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 88882.377954/2019-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinaldo Resende de Oliveira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resende de Oliveira, R. On Clusters and the Multi-isoperimetric Profile in Riemannian Manifolds with Bounded Geometry. J Dyn Control Syst 29, 419–441 (2023). https://doi.org/10.1007/s10883-022-09592-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09592-3

Keywords

Mathematics Subject Classification (2010)

Navigation