Skip to main content
Log in

Piecewise-Smooth Slow–Fast Systems

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We deal with piecewise-smooth differential systems \(\dot {z}=X(z), z=(x,y)\in \mathbb {R}\times \mathbb {R}^{n-1},\) with switching occurring in a codimension one smooth surface Σ. A regularization of X is a 1-parameter family of smooth vector fields Xδ,δ > 0, satisfying that Xδ converges pointwise to X in \(\mathbb {R}^{n}\setminus {\Sigma }\), when \(\delta \rightarrow 0\). The regularized system \(\dot {z}=X^{\delta }(z)\) is a slow–fast system. We work with two known regularizations: the classical one proposed by Sotomayor and Teixeira and its generalization, using transition functions without imposing the monotonicity condition. Minimal sets of regularized systems are studied with tools of the geometric singular perturbation theory. Moreover, we analyzed the persistence of the sliding region of piecewise-smooth slow–fast systems by singular perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bonet-Revés C, M-Seara T. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete Contin Dyn Syst 2016;36-7: 3545–3601.

    Article  MathSciNet  Google Scholar 

  2. Bonet-Revés C, Larrosa J, M-Seara T. Regularization around a generic codimension one fold-fold singularity. J Diff Equ 2018;265:1761–1838.

    Article  MathSciNet  Google Scholar 

  3. Buzzi CA, Silva PR, Teixeira M. A Singular approach to discontinuous vector fields on the plane. J Diff Equ 2006;231:633–655.

    Article  MathSciNet  Google Scholar 

  4. Cardin PT, Moraes JR, Silva PR. Persistence of periodic orbits with sliding or sewing by singular perturbation. J Math Anal Appl 2015;423:1166–1182.

    Article  MathSciNet  Google Scholar 

  5. Cardin PT, Silva PR, Teixeira MA. On singularly perturbed Filippov systems. Eur J Appl Math 2013;24:835–856.

    Article  MathSciNet  Google Scholar 

  6. Cardin PT, Silva PR, Teixeira MA. Three time scale singular perturbation problems and nonsmooth dynamical systems. Q Appl Math 2014;72:673–687.

    Article  MathSciNet  Google Scholar 

  7. Dumortier F, Roussarie R. Canard cycles and center manifolds. Memoirs Amer Mat Soc 1996;121:100.

    MathSciNet  MATH  Google Scholar 

  8. Fenichel N. Geometric singular perturbation theory for ordinary differential equations. J Diff Equ 1979;31:53–98.

    Article  MathSciNet  Google Scholar 

  9. Filippov AF. Differential equations with discontinuous right–hand sides Mathematics and its applications (Soviet Series). Dordrecht: Kluwer Academic Publishers; 1988.

    Book  Google Scholar 

  10. Fridman LM. Singularly perturbed analysis of chattering in relay control systems. IEEE Trans Autom Control 2002;47:2079–2084.

    Article  MathSciNet  Google Scholar 

  11. Fridman LM. Slow periodic motions with internal sliding modes in variable structure systems. Int J Control 2002;75:524–537.

    Article  MathSciNet  Google Scholar 

  12. Guardia M, Seara T, Teixeira M. Generic bifurcations of low codimension of planar Filippov systems. J Diff Equ 2011;250:1967–2023.

    Article  MathSciNet  Google Scholar 

  13. Hirsch M, Pugh C, Shub M. 1977. Invariant manifolds, Lecture Notes in Mathematics 583, Springer-Verlag.

  14. Jeffrey M. Hidden dynamics in models of switching and switching. Physica D 2014; 273-274:34–45.

    Article  Google Scholar 

  15. Jones CKRT. 2006. Geometric singular perturbation theory, Lecture Notes in Mathematics 1609. Springer-Verlag.

  16. Kristiansen K, Hogan SJ. Uldall Regularizations of two-fold bifurcations in planar piecewise smooth systems using blow u. SIAM J Appl Dyn Syst 2015;14-4: 1731–1786.

    Article  Google Scholar 

  17. Kuznetsov YA, Rinaldi S, Gragnani A. One–parameter bifurcations in planar filippov systems. Int J Bifurc Chaos 2003;13:215–218.

    Article  MathSciNet  Google Scholar 

  18. Llibre J, Silva PR, Teixeira M. Regularization of discontinuous vector fields via singular perturbation. J Dynam Diff Equ 2007;19:309–331.

    Article  MathSciNet  Google Scholar 

  19. Llibre J, Silva PR, Teixeira M. Sliding vector fields via slow fast systems. Bulletin of the Belgian Mathematical Society Simon Stevin 2008;15:851–869.

    Article  MathSciNet  Google Scholar 

  20. Llibre J, Silva PR, Teixeira M. Study of singularities in non smooth dynamical systems via singular perturbation. SIAM J Appl Dyn Syst 2009;8:508–526.

    Article  MathSciNet  Google Scholar 

  21. Llibre J, Silva PR, Teixeira M. Sliding vector fields for non-smooth dynamical systems having intersecting switching manifolds. Nonlinearity 2015;28:493–507.

    Article  MathSciNet  Google Scholar 

  22. Medrado J, Torregrosa J. Uniqueness of limit cycles for sewing planar piecewise linear systems. J Math Anal Appl 2015;431:529–544.

    Article  MathSciNet  Google Scholar 

  23. Novaes D, Jeffrey M. Regularization of hidden dynamics in piecewise smooth flows. J Diff Equ 2015;259:4615–4633.

    Article  MathSciNet  Google Scholar 

  24. Novaes D, Meza–Sarmiento I, Silva PR. 2018. Nonlinear regularization of discontinuous vector fields and singular perturbation, Differ Equ Dyn Syst. https://doi.org/10.1007/s12591-018-0439-1.

  25. Panazzolo D. Silva PR. Regularization of discontinuous foliations: blowing up and sliding conditions via Fenichel theory. J Diff Equ 2017;263:8362–8390.

    Article  MathSciNet  Google Scholar 

  26. Sieber J, Kowalczyk P. Small–scale instabilities in dynamical systems with sliding. Phisica D Nonlinear Phenomena 2009;239:44–57.

    Article  MathSciNet  Google Scholar 

  27. Sotomayor J, Machado AL. Structurally stable discontinuous vector fields on the plane. Qual Theory Dyn Syst 2002;3:227–250.

    Article  MathSciNet  Google Scholar 

  28. Sotomayor J, Teixeira M. Regularization of discontinuous vector fields. International Conference on Differential Equations, Lisboa, Equadiff 1996;95:207–223.

    MATH  Google Scholar 

Download references

Funding

Jaime R. de Moraes is partially supported by FUNDECT–219/2016. Paulo R. da Silva is partially supported by CAPES (88881.068462/2014-01) and FAPESP (2019/10269-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo R. da Silva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, P.R., de Moraes, J.R. Piecewise-Smooth Slow–Fast Systems. J Dyn Control Syst 27, 67–85 (2021). https://doi.org/10.1007/s10883-020-09480-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-020-09480-8

Keywords

Mathematics Subject Classification (2010)

Navigation