Skip to main content
Log in

Gauss-Bonnet Theorem in Sub-Riemannian Heisenberg Space \(\mathbb H^{1}\)

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We prove a version of the Gauss-Bonnet theorem in sub-Riemannian Heisenberg space \(\mathbb H^{1}\). The sub-Riemannian distance makes \(\mathbb H^{1}\) a metric space that consequently has a spherical Hausdorff measure. Using this measure, we define a Gaussian curvature at points of a surface S where the sub-Riemannian distribution is transverse to the tangent space of S. If all points of S have this property, we prove a Gauss-Bonnet formula and, for compact surfaces (which are topologically a torus), we obtain \({\int }_{S}K=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev AA, Boscain U, Sigalotti M. A Gauss-Bonnet-like formula on two-dimensional almost Riemannian manifolds. Discr Contin Dyn Syst 2008;20(4):801–822.

    Article  MathSciNet  MATH  Google Scholar 

  2. Balogh Z, Tyson JT, Vecchi E. 2016. Sub-Riemannian curvature and a Gauss-Bonnet theorem in the Heisenberg group. arXiv:1604.00180.

  3. Capogna L, Danielli D, Pauls SD, Tyson JT. An introduction to the Heisenberg Group and the sub-Riemannian isoperimetric problem. Basel, Boston: Birkhäuser; 2007.

    MATH  Google Scholar 

  4. Danielli D, Garofalo N, Nhieu DM. Sub-Riemannian calculus on hypersurfaces in Carnot groups. Adv Math 2007;215(1):292–378.

    Article  MathSciNet  MATH  Google Scholar 

  5. Falbel E, Veloso J, Verderesi J. Constant curvature models in sub-riemannian geometry. VIII Sch Differ Geom Mat Contemp 1993;4:119–125.

    MathSciNet  MATH  Google Scholar 

  6. Gromov M. Carnot-carathéodory spaces seen from within. Progress Math-Boston 1996;144:85–324.

    MathSciNet  MATH  Google Scholar 

  7. Hicks N-J. Notes on differential geometry: D. Van Nostrand Co., Inc. Interscience Publishers Wiley; 1965.

  8. Montgomery R. A tour of subriemannian geometries, their geodesics, and applications. Providence, R.I: American Mathematical Society; 2002.

    MATH  Google Scholar 

  9. Pansu P. Geometrie du groupe d’heisenberg: Ph.D. Thesis, University Paris VII; 1982.

  10. Pansu P. Une inégalité isopérimétrique sur le groupe de Heisenberg. CR Acad Sci Paris Sér I Math 1982;295(2):127–130. http://www.math.u-psud.fr/pansu/CRAS_1982.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. M. Veloso.

Additional information

The authors are partially supported by Programa Nacional de Cooperação Acadêmica da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES/Brasil, FADESP and PROPESP/UFPA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, M.M., Veloso, J.M.M. Gauss-Bonnet Theorem in Sub-Riemannian Heisenberg Space \(\mathbb H^{1}\) . J Dyn Control Syst 22, 807–820 (2016). https://doi.org/10.1007/s10883-016-9338-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-016-9338-3

Keywords

Mathematics Subject Classification (2010)

Navigation