Skip to main content
Log in

Small Time Asymptotics on the Diagonal for Hörmander’s Type Hypoelliptic Operators

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We compute the small time asymptotics of the fundamental solution of Hörmander’s type hypoelliptic operators with drift, on the diagonal at a point x 0. We show that the order of the asymptotics depends on the controllability of an associated control problem and of its approximating system. If the control problem of the approximating system is controllable at x 0, then so is also the original control problem, and in this case we show that the fundamental solution blows up as \(\phantom {\dot {i}\!}t^{-\mathcal {N}/2}\), where \(\phantom {\dot {i}\!}\mathcal {N}\) is a number determined by the Lie algebra at x 0 of the fields, that define the hypoelliptic operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev AA, Sachkov Y. Control theory from the geometric viewpoint. vol. 87. Springer-Verlag Berlin Heidelberg; 2004.

  2. Barilari D. Trace heat kernel asymptotics in 3d contact sub-riemannian geometry. J Math Sci 2013;195(3):391–411.

    Article  MathSciNet  MATH  Google Scholar 

  3. Barilari D, Boscain U, Neel RW. Small time heat kernel asymptotics at the sub-riemannian cut locus. J Differ Geom 2012;92(3):373–416.

    MathSciNet  MATH  Google Scholar 

  4. Ben Arous G. Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Annales scientifiques de l’École Normale Supérieure 1988;21:307–331.

    MathSciNet  Google Scholar 

  5. Ben Arous G. Noyau de la chaleur hypoelliptique et geometrie sous-riemannienne. In: Métivier M and Watanabe S, editors. Stochastic Analysis, Lecture Notes in Mathematics. French: Springer Berlin Heidelberg. 1988;1322:1–16, doi:10.1007/BFb0077862. 978-3-540-19352-4.

  6. Ben Arous G, Gradinaru M, Ledoux M. Hölder norms and the support theorem for diffusions. Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques 1994;30(3):415–436.

    MathSciNet  MATH  Google Scholar 

  7. Ben Arous G, Léandre R. Décroissance exponentielle du noyau de la chaleur sur la diagonale (i). Probab Theory Relat Fields 1991;90:175–202.

    Article  MATH  Google Scholar 

  8. Ben Arous G, Léandre R. Décroissance exponentielle du noyau de la chaleur sur la diagonale (ii). Probab Theory Relat Fields 1991;90:377–402.

    Article  MATH  Google Scholar 

  9. Bianchini R, Stefani G. Graded approximations and controllability along a trajectory. SIAM J Control Optim 1990;28(4):903–924.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bramanti M, Cupini G, Lanconelli E, Priola E. Global l p estimates for degenerate ornstein-uhlenbeck operators with variable coefficients. Mathematische Nachrichten 2013;286:1087–1101.

    Article  MathSciNet  MATH  Google Scholar 

  11. Cinti C, Pascucci A, Polidoro S. Pointwise estimates for solutions to a class of non-homogeneous kolmogorov equations. Math Ann 2008;340(2):237–264.

    Article  MathSciNet  MATH  Google Scholar 

  12. Delarue F, Menozzi S. Density estimates for a random noise propagating through a chain of differential equations. J Functional Analysis 2010;259(6):1577–1630.

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedman A. Partial differential equations of parabolic type. Prentice-Hall; 1964.

  14. Friz P, Victoir N, Vol. 120. Multidimensional stochastic processes as rough paths. Theory and applications., Cambridge studies of advanced mathematics. Cambridge University Press; 2010.

  15. Friz P K, Hairer M. A Course on Rough Paths. With an Introduction to Regularity Structures, Universitext: Springer International Publishing; 2014, p. XIV, 251. ISBN 978-3-319-08331-5.

  16. Hairer M. On Malliavin’s proof of Hörmander’s theorem. Bull Sci Math 2011; 135(6-7):650– 666. doi:10.1016/j.bulsci.2011.07.007.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hörmander L. Hypoelliptic second order differential equations. Acta Math 1967; 119:147–171.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ikeda N, Watanabe S. Stochastic differential equations and diffusion processes. North-Holland Kodansha; 1989.

  19. Lanconelli E, Pascucci A, Polidoro S. Linear and nonlinear ultraparabolic equations of kolmogorov type arising in diffusion theory and in finance. Nonlinear problems in mathematical physics and related topics. vol. 2. Kluwer Academic/Plenum Publisher; 2002, pp. 243–265.

  20. Lanconelli E, Polidoro S. On a class of hypoelliptic evolution operators. Partial differential equations, II (Turin, 1993). Rend. Sem. Mat. Univ. Politec. Torino 1994;52 (1289901):29–63. ISSN 0373-1243.

    MathSciNet  MATH  Google Scholar 

  21. Léandre R. Majoration en temps petit de la densité d’une diffusion dégénérée. Probab Theory Relat Fields 1987;74:289–294.

    Article  MATH  Google Scholar 

  22. Léandre R. Minoration en temps petit de la densité d’une diffusion dégénérée. J Funct Anal 1987;74:399–414.

    Article  MathSciNet  MATH  Google Scholar 

  23. Malliavin P. Stochastic calculus of variation and hypoelliptic operators. Proc Inter Symp SDE 1978:195–263.

  24. McKean HP Jr, Singer IM. Curvature and the eigenvalues of the laplacian. J Differ Geom 1967;1(1–2):43–69.

    MathSciNet  MATH  Google Scholar 

  25. Millet A, Sanz-Solé M. A simple proof of the support theorem for diffusion processes. Séminaire de probabilités de Strasbourg 1994;28:36–48.

    MathSciNet  MATH  Google Scholar 

  26. Rosenberg S. The Laplacian on a Riemannian manifold, London mathematical society student texts. vol. 31. Cambridge University Press; 1997.

  27. Stroock DW, Varadhan SRS. On the support of diffusion processes with applications to the strong maximum principle. Proceedings of the 6th Berkeley symposium on mathematical statistics and probability; 1972. p. 333–359.

  28. Varadhan S. On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun Pure Appl Math 1967;20:431–455.

Download references

Acknowledgments

The author is grateful with Andrei Agrachev for many useful discussions and for introducing to the studied problem, and with Davide Barilari, for his interest in the subject and for many illuminating questions and remarks. The author has been partially supported by the Institut Henri Poincaré, Paris, where part of this research has been carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Paoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paoli, E. Small Time Asymptotics on the Diagonal for Hörmander’s Type Hypoelliptic Operators. J Dyn Control Syst 23, 111–143 (2017). https://doi.org/10.1007/s10883-016-9321-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-016-9321-z

Keywords

Mathematics Subject Classification (2010)

Navigation