Abstract
We consider the left-invariant sub-Riemannian and Riemannian structures on the Heisenberg groups. A classification of these structures was found previously. In the present paper, we find (for each normalized structure) the isometry group, the exponential map, the totally geodesic subgroups, and the conjugate locus. Finally, we determine the minimizing geodesics from identity to any given endpoint. (Several of these points have been covered, to varying degrees, by other authors.)
Similar content being viewed by others
References
Agrachev A, Barilari D. Sub-Riemannian structures on 3D Lie groups. J Dyn Control Syst 2012;18(1):21–44. doi:10.1007/s10883-012-9133-8.
Agrachev A, Barilari D, Boscain U. Introduction to Riemannian and sub-Riemannian geometry. http://webusers.imj-prg.fr/~davide.barilari/Notes.php. Preprint SISSA 09/2012/M.
Agrachev A, Barilari D, Boscain U. On the Hausdorff volume in sub-Riemannian geometry. Calc Var Partial Differential Equations 2012;43(3-4):355–88. doi:10.1007/s00526-011-0414-y.
Agrachev AA. Exponential mappings for contact sub-Riemannian structures. J Dynam Control Systems 1996;2(3):321–58. doi:10.1007/BF02269423.
Agrachev AA, Gamkrelidze RV. Feedback-invariant optimal control theory and differential geometry. I. Regular extremals. J Dyn Control Syst 1997;3(3):343–89. doi:10.1007/BF02463256.
Agrachev AA, Sachkov YuL. Control theory from the geometric viewpoint. Berlin: Springer; 2004. doi:10.1007/978-3-662-06404-7.
Alcheikh M, Orro P, Pelletier F. Characterizations of Hamiltonian geodesics in sub-Riemannian geometry. J Dyn Control Syst 1997;3(3):391–418. doi:10.1007/BF02463257.
Almeida DM. Sub-Riemannian homogeneous spaces of Engel type. J Dyn Control Syst 2014;20(2):149–66. doi:10.1007/s10883-013-9194-3.
Ambrosio L, Rigot S. Optimal mass transportation in the Heisenberg group. J Funct Anal 2004;208(2):261–301. doi:10.1016/S0022-1236(03)00019-3.
Ardentov AA, Sachkov YuL. Extremal trajectories in the nilpotent sub-Riemannian problem on the Engel group. Mat Sb 2011;202(11):31–54. doi:10.1070/SM2011v202n11ABEH004200.
Ardentov AA, Sachkov YuL. Conjugate points in nilpotent sub-Riemannian problem on the Engel group. J Math Sci (N Y) 2013;195(3):369–90. doi:10.1007/s10958-013-1584-2. Translation of Sovrem. Mat. Prilozh. No. 82 (2012).
Beals R, Gaveau B, Greiner PC. Hamilton–Jacobi theory and the heat kernel on Heisenberg groups. J Math Pures Appl 2000;79(7):633–89. doi:10.1016/S0021-7824(00)00169-0.
Bellaïche A. The tangent space in sub-Riemannian geometry. In: Bellaïche A and Risler JJ, editors. Sub-Riemannian geometry, pp 1–78. Basel: Birkhäuser; 1996, 10.1007/978-3-0348-9210-0_1.
Berndt J, Tricerri F, Vanhecke L. Generalized Heisenberg groups and Damek-Ricci harmonic spaces Lecture Notes in Mathematics, vol 1598. Berlin: Springer; 1995.
Biggs R, Nagy PT. On extensions of sub-Riemannian structures on Lie groups. Differential Geom Appl 2016;46:25–38. doi:10.1016/j.difgeo.2016.02.001.
Biggs R, Nagy PT. A classification of sub-Riemannian structures on the Heisenberg groups. Acta Polytech Hungar 2013;10(7):41–52. doi:10.12700/APH.10.07.2013.7.4.
Biggs R, Remsing CC. On the equivalence of cost-extended control systems on Lie groups. In: Karimi HR, editors. Recent researches in automatic control, systems science and communications, Porto, Portugal, 2012, pp 60–65. WSEAS Press; 2012.
Boscain U, Rossi F. Invariant Carnot–Caratheodory metrics on S3,SO(3),SL(2), and lens spaces. SIAM J Control Optim 2008; 47 (4): 1851–78. doi:10.1137/070703727.
Butt YA, Sachkov YuL, Bhatti AI. Extremal trajectories and Maxwell strata in sub-Riemannian problem on group of motions of pseudo-Euclidean plane. J Dyn Control Syst 2014;20(3):341–64. doi:10.1007/s10883-014-9239-2.
Calin O, Chang DC. Sub-Riemannian geometry. Cambridge: Cambridge University Press; 2009. doi:10.1017/CBO9781139195966.
Calin O, Chang DC, Greiner P. Geometric analysis on the Heisenberg group and its generalizations. American Mathematical Society, Providence, RI. Somerville: International Press; 2007.
Capogna L, Le Donne E. Smoothness of subRiemannian isometries (arXiv:1305.5286).
Cowling M, Dooley A, Korányi A, Ricci F. An approach to symmetric spaces of rank one via groups of Heisenberg type. J Geom Anal 1998;8(2): 199–237. doi:10.1007/BF02921641.
Eberlein P. Geometry of 2-step nilpotent groups with a left invariant metric. Ann Sci École Norm Sup 1994;27(5):611–60. http://www.numdam.org/item?id=ASENS_1994_4_27_5_611_0.
Eberlein P. Geometry of 2-step nilpotent groups with a left invariant metric. II. Trans Amer Math Soc 1994;343(2):805–28. doi:10.2307/2154743.
Eberlein P. Geometry of 2-step nilpotent Lie groups. Modern dynamical systems and applications. Cambridge: Cambridge University Press; 2004. p. 67–101.
Falbel E, Gorodski C. Sub-Riemannian homogeneous spaces in dimensions 3 and 4. Geom Dedicata 1996;62(3):227–52. doi:10.1007/BF00181566.
Gorbatsevich VV, Onishchik AL, Vinberg EB. Foundations of Lie theory and Lie transformation groups. Berlin: Springer; 1997.
Gordon C. Isospectral closed Riemannian manifolds which are not locally isometric. J Differential Geom 1993;37(3):639–49. http://projecteuclid.org/euclid.jdg/1214453902.
Ha KY, Lee JB. Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math Nachr 2009;282(6):868–98. doi:10.1002/mana.200610777.
Hamenstädt U. Some regularity theorems for Carnot–Carathéodory metrics. J Differential Geom 1990;32(3):819–50.
Homolya Sz, Nagy PT. Submersions on nilmanifolds and their geodesics. Publ Math Debrecen 2003;62(3-4):415–28.
Jurdjevic V. Geometric control theory. Cambridge: Cambridge University Press; 1997.
Kaplan A. Riemannian nilmanifolds attached to Clifford modules. Geom Dedicata 1981;11(2):127–36. doi:10.1007/BF00147615.
Kaplan A. On the geometry of groups of Heisenberg type. Bull London Math Soc 1983;15(1):35–42. doi:10.1112/blms/15.1.35.
Kishimoto I. Geodesics and isometries of Carnot groups. J Math Kyoto Univ 2003; 43(3):509–22.
Korányi A. Geometric properties of Heisenberg-type groups. Adv Math 1985;56 (1):28–38. doi:10.1016/0001-8708(85)90083-0.
Lauret J. Homogeneous nilmanifolds of dimensions 3 and 4. Geom Dedicata 1997; 68(2):145–55. doi:10.1023/A:1004936725971.
Lauret J. Homogeneous nilmanifolds attached to representations of compact Lie groups. Manuscripta Math 1999;99(3):287–309. doi:10.1007/s002290050174.
Lauret J. Modified H-type groups and symmetric-like Riemannian spaces. Differential Geom Appl 1999;10(2):121–43. doi:10.1016/S0926-2245(99)00002-9.
Lauret J. Einstein solvmanifolds and nilsolitons. New developments in Lie theory and geometry, Contemp. Math., vol 491, pp 1–35. Providence: Amer. Math. Soc.; 2009, 10.1090/conm/491/09607.
Marenich V. Geodesics in Heisenberg groups. Geom Dedicata 1997;66(2):175–85. doi:10.1023/A:1004916117293.
Marsden JE, Ratiu TS. Introduction to mechanics and symmetry. New York: Springer; 1994.
Mazhitova AD. Sub-riemannian geodesics on the three-dimensional solvable non-nilpotent Lie group SOLV−. J Dyn Control Syst 2012;18(3):309–22. doi:10.1007/s10883-012-9145-4.
Milnor J. Curvatures of left invariant metrics on Lie groups. Advances in Math 1976;21(3):293–329. doi:10.1016/S0001-8708(76)80002-3.
Moiseev I, Sachkov YuL. Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim Calc Var 2010;16(2):380–99. doi:10.1051/cocv/2009004.
Monroy-Pérez F, Anzaldo-Meneses A. Optimal control on the Heisenberg group. J Dyn Control Syst 1999;5(4):473–99. doi:10.1023/A:1021787121457.
Monroy-Pérez F, Anzaldo-Meneses A. Optimal control on nilpotent Lie groups. J Dyn Control Syst 2002;8(4):487–504. doi:10.1023/A:1020711301924.
Montgomery R. 2002. A tour of subriemannian geometries, their geodesics and applications: American Mathematical Society, Providence.
Monti R. Some properties of Carnot–Carathéodory balls in the Heisenberg group. Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 2000;11(3):155–67.
Nagy PT, Homolya Sz. Geodesic vectors and subalgebras in two-step nilpotent metric Lie algebras. Adv Geom 2015;15(1):121–6. doi:10.1515/advgeom-2014-0028.
Petersen P. Riemannian geometry, 2nd edn. New York: Springer; 2006.
Saal L. The automorphism group of a Lie algebra of Heisenberg type. Rend Sem Mat Univ Politec Torino 1996;54(2):101–13.
Sachkov YuL. Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim Calc Var 2010;16(4):1018–39. doi:10.1051/cocv/2009031.
Sachkov YuL. Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim Calc Var 2011;17(2):293–321. doi:10.1051/cocv/2010005.
Strichartz RS. Sub-Riemannian geometry. J Differential Geom 1986;24(2):221–63. http://projecteuclid.org/euclid.jdg/1214440436.
Tan KH, Yang XP. Characterisation of the sub-Riemannian isometry groups of H-type groups. Bull Austral Math Soc 2004;70(1):87–100. doi:10.1017/S000497270003584X.
Vershik AM, Gershkovich VY. Nonholonomic problems and the theory of distributions. Acta Appl Math 1988;12(2):181–209. doi:10.1007/BF00047498.
Vershik AM, Gershkovich VY. Nonholonomic dynamical systems, geometry of distributions and variational problems. In: Arnol’d VI and Novikov SP, editors. Dynamical systems VII. Berlin: Springer; 1994. p. 1–81. doi:10.1007/978-3-662-06796-3.
Vukmirović S. Classification of left-invariant metrics on the Heisenberg group. J Geom Phys 2015;94:72–80. doi:10.1016/j.geomphys.2015.01.005.
Walschap G. Cut and conjugate loci in two-step nilpotent Lie groups. J Geom Anal 1997;7(2):343–55. doi:10.1007/BF02921727.
Wilson EN. Isometry groups on homogeneous nilmanifolds. Geom Dedicata 1982; 12(3):337–46. doi:10.1007/BF00147318.
Wolf JA. Curvature in nilpotent Lie groups. Proc Amer Math Soc 1964;15:271–4.
Author information
Authors and Affiliations
Corresponding author
Additional information
The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 317721. The first author is primarily funded by the Claude Leon Foundation.
Rights and permissions
About this article
Cite this article
Biggs, R., Nagy, P.T. On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups. J Dyn Control Syst 22, 563–594 (2016). https://doi.org/10.1007/s10883-016-9316-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10883-016-9316-9
Keywords
- Sub-Riemannian geometry
- Riemannian geometry
- Heisenberg group
- Isometries
- Geodesics
- Totally geodesic subgroups
- Conjugate locus