Skip to main content
Log in

Uniform Stabilization of an Axially Moving Kirchhoff String by a Boundary Control of Memory Type

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the stabilization of solutions of an axially moving string of kirchhoff type by a viscoelastic boundary control. We prove that the dissipation produced by the viscoelastic term is sufficient to suppress the transversal vibrations that occur during the axial motion of the string, and we also show that the string displacement decays in an arbitrary rate. When comparing with immobile strings, we conclude that the movement of the string itself produces enough extra damping ensuring the stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrate S. Vibration of belts and belt drives. Mech Mach Theory 1992;27:645–59.

    Article  Google Scholar 

  2. Bae JJ, Yoon SB. On uniform decay of wave equation of carrier model subject to memory condition at the boundary. J Korean Math Soc 2007;44(4):1013–24.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bapat VA, Srinivasan P. Nonlinear transverse oscillations in traveling strings by the method of harmonic balance. J Appl Mech 1967;34:775–7.

    Article  Google Scholar 

  4. Carrier GF. On the nonlinear vibration problem of the elastic string. Q Appl Math 1965;3:157–65.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavalcanti MM, Cavalcanti VND, Santos ML. Uniform decay rates of solutions to a nonlinear wave equation with boundary condition of memory type. Sys Mod Optim (166) series IFIP Inter Feder Info Proces 1999:239–55.

  6. Chung CH, Tan CA. Active vibration control of the axially moving string by wave cancellation. J Vib Acoust 1995;117:49–55.

    Article  Google Scholar 

  7. Cornilleau P, Nicaise S. Energy decay for solutions of the wave equation with general memory boundary conditions. Diff Integ Equ 2009;22(12):1173–92.

    MathSciNet  MATH  Google Scholar 

  8. Engel K-J, Nagel R. One parameter semigroups for linear evolution equations, vol. 194 of Graduate Texts in Mathematics. New York: Springer; 2000.

    Google Scholar 

  9. Fabrizio M, Morro M. A boundary condition with memory in electromagnetism. Arch Ration Mech Anal 1996;136:359–81.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim D, Kang YH, Lee JB, Ko GR, Jung IH. Stabilization of a nonlinear Kirchhoff equation by boundary feedback control. J Eng Math 2012;77(1): 197–209.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kirane M, Tatar N-E. A memory type boundary stabilization of a midly damped wave equation. Electron J Qual Th Diff Equ 1999;6:1–17.

    Article  Google Scholar 

  12. Kirane M, Tatar N-E. Nonexistence results for a semilinear hyperbolic problem with boundary condition of memory type. Zeit Anal Anw 2000;19(2):1–16.

    MathSciNet  MATH  Google Scholar 

  13. La Salle J, Lefschetz S. Stability by Liapunov’s direct method with applications. San Diego: Academic; 1961.

    MATH  Google Scholar 

  14. Lazzari B, Nibbi R. On the exponential decay of the Euler-Bernoulli beam with boundary energy dissipation 2012;389(2):1078–85.

    Google Scholar 

  15. Leal LG. Advanced transport phenomena: fluid mechanics and connective transport processes. Cambridge: Cambridge University Press; 2007, p. 912.

    Book  MATH  Google Scholar 

  16. Lee SY, Mote CD. Vibration control of an axially moving string by boundary control. J Dyn Syst Meas Control 1996;118:66–74.

    Article  MATH  Google Scholar 

  17. Li T, Hou Z. Exponential stabilization of an axially moving string with geometrical nonlinearity by linear boundary feedback. J Sound Vib 2006;296:861–70.

    Article  MathSciNet  MATH  Google Scholar 

  18. Messaoudi SA, Soufyane A. General decay of solutions of a wave equation with a boundary control of memory type. Nonl Anal Real World Appl 2010;11(4):2896–904.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mote CD. Dynamic stability of axially moving materials. Shock Vib Dig 1972;4 (4):2–11.

    Article  Google Scholar 

  20. Nicaise S, Pignotti C. Stabilization of the wave equation with variable coefficients and boundary condition of memory type. Asym Anal 2006;50:31–67.

    MathSciNet  MATH  Google Scholar 

  21. Park SH. General decay for a semilinear wave equation with boundary frictional and memory conditions. Bull Korean Math Soc 2014;51(3):681–9.

    Article  MathSciNet  MATH  Google Scholar 

  22. Park JY, Kim JA. Global existence and stability for Euler-Bernoulli beam equation with memory condition at the boundary. J Korean Math Soc 2005;42(6):1137–52.

    Article  MathSciNet  MATH  Google Scholar 

  23. Prüss J. Evolutionary integral equations and applications. Basel: Birkhäuser; 1993.

    Book  MATH  Google Scholar 

  24. Propst G, Prüss J. On wave equations with boundary dissipation of memory type. J Integral Equations Appl 1995;8(1):99–123.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rivera JEM, Andrade D. Exponential decay of non-linear wave equation with a viscoelastic boundary condition. Math Meth Appl Sci 2000;23(1):41–61.

    Article  MathSciNet  MATH  Google Scholar 

  26. Tatar N-E. On a problem arising in isothermal viscoelasticity. Int J Pure Appl Math 2003;3(1):1–12.

    MathSciNet  MATH  Google Scholar 

  27. Tatar N-E. Polynomial stability without polynomial decay of the relaxation function. Math Meth Appl Sci 2008;31(15):1874–86.

    Article  MathSciNet  MATH  Google Scholar 

  28. Tatar N-E. How far can relaxation functions be increasing in viscoelastic problems. Appl Math Lett 2009;22(3):336–40.

    Article  MathSciNet  MATH  Google Scholar 

  29. Tatar N-E. Exponential decay for a viscoelastic problem with singular kernel. Zeit Angew Math Phys 2009;60(4):640–50.

    Article  MathSciNet  MATH  Google Scholar 

  30. Tatar N-E. On a large class of kernels yielding exponential stability in viscoelasticity. Appl Math Comp 2009;215(6):2298–306.

    Article  MathSciNet  MATH  Google Scholar 

  31. Tatar N-E. Arbitrary decays in viscoelasticity. J Math Phys 2011;52(1):013502.

    Article  MathSciNet  MATH  Google Scholar 

  32. Tatar N-E. A new class of kernels leading to an arbitrary decay in viscoelasticity. Meditter J Math 2013;10:213–26.

    Article  MathSciNet  MATH  Google Scholar 

  33. Santos ML. Decay rates for solutions of semilinear wave equations with a memory condition at the boundary. Electron J Qual Th Diff Equ 2002;7:2.

    MathSciNet  Google Scholar 

  34. Santos ML. Asymptotic behavior of solutions to wave equations with a memory condition at the boundary. J Diff Eqs 2001;73:1–11.

    Google Scholar 

  35. Santos ML, Ferreira J, Pereira DC, Raposo CA. Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary. Nonl Anal TMA 2003;54:959–76.

    Article  MathSciNet  MATH  Google Scholar 

  36. Shahruz SM. Boundary control of the axially moving Kirchhoff string. Automatica 1998;34(10):1273–77.

    Article  MATH  Google Scholar 

  37. Shahruz SM, Kurmaji DA. Vibration suppression of a non-linear axially moving string by boundary control. J Sound Vib 1997;201(1):145–52.

    Article  MathSciNet  MATH  Google Scholar 

  38. Walker JA. Dynamical systems and evolution equations, theory and applications. New York: Plenum; 1980.

    Book  MATH  Google Scholar 

  39. Wickert JA, Mote CD. Classical vibration analysis of axially moving continua. J Appl Mech 1990;57:738–44.

    Article  MATH  Google Scholar 

  40. Wickert JA, Mote CD. Current research on the vibration and stability of axially-moving materials. Shock Vib Dig 1988;20(5):3–13.

    Article  Google Scholar 

  41. Wu J, Li S, Chai S. Uniform decay of the solution to a wave equation with memory conditions on the boundary. Nonl Anal 2010;73:2213–20.

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang Q. Global existence and exponential stability for a quasilinear wave equation with memory damping at the boundary. J Optim Theory Appl 2008;139(3):617–34.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The second author would like to express his gratitude for the financial support and the facilities provided by King Fahd University of Petroleum and Minerals through the Project no.: IP151-MATH-143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkarim Kelleche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelleche, A., Tatar, Ne. & Khemmoudj, A. Uniform Stabilization of an Axially Moving Kirchhoff String by a Boundary Control of Memory Type. J Dyn Control Syst 23, 237–247 (2017). https://doi.org/10.1007/s10883-016-9310-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-016-9310-2

Keywords

Mathematics Subject Classification (2010)

Navigation