Skip to main content
Log in

Bifurcation Behaviors Analysis on a Predator–Prey Model with Nonlinear Diffusion and Delay

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, a class of predator–prey model with nonlinear diffusion and time delay is considered. The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, we derive the explicit formulas for determining the properties of the bifurcating periodic solutions. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, main conclusions are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–10
Figs. 11–20

Similar content being viewed by others

References

  1. Baek H, Lim YD. Dynamics of an impulsively controlled Michaelis–Menten type predator-prey system. Commun Nonlinear Sci Numer Simulat. 2011;16(4):2041–53.

    Article  MATH  MathSciNet  Google Scholar 

  2. Beretta E, Takeuchi Y. Convergence results in SIR epidemic model with varying populations sizes. Nonlinear Anal. 1997;28(12):1909–21.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bhattacharya S, Martcheva M. Oscillations in a size-structured prey-predator model. Math Bios. 2010;228(1):31–44.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cui GH, Yan XP. Stability and bifurcation analysis for a two-competitor/one-prey system with two delays. J Korean Math Soc. 2011;48(6):1225–48.

    Article  MATH  MathSciNet  Google Scholar 

  5. Genik L, Van den Driessche P. A model for disease without immunity in a variable size population. Can Appl Math Quart. 1998;6(1):5–16.

    MATH  Google Scholar 

  6. Hale J. Theory of functional differential equation. New York: Springer-Verlag; 1977.

    Book  Google Scholar 

  7. Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981.

    MATH  Google Scholar 

  8. Hethcote HW. The mathematics of infectious diseases. SIAM Rev. 2000;42(4):599–653.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hou J, Teng ZD. Continuous and impulsive vaccination of SEIR epidemic models with saturation incidence rates. Math Comput Simulat. 2009;79(10):3038–54.

    Article  MATH  MathSciNet  Google Scholar 

  10. Li GH, Jin Z. Global stability of an SEI epidemic model. Chaos, Solitons Fractals. 2004;21(4):925–31.

    Article  MATH  MathSciNet  Google Scholar 

  11. Li GH, Jin Z. Global stability of an SEI epidemic model with general contact rate. Chaos, Solitons Fractals. 2005;23(3):997–1004.

    MATH  MathSciNet  Google Scholar 

  12. Li MY, Muldowney JS. Global stability for the SEIR model in epidemiology. Math Biosci. 1995;125(2):155–64.

    Article  MATH  MathSciNet  Google Scholar 

  13. Li XZ, Zhou LL. Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate. Chaos, Solitons Fractals. 2009;40(2):874–84.

    Article  MATH  MathSciNet  Google Scholar 

  14. Meng XZ, Chen LS, Cheng HD. Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination. App Math Comput. 2007;186(1):516–29.

    Article  MATH  MathSciNet  Google Scholar 

  15. Meng XZ, Chen LS, Cheng HD, Jiao JJ, Chen LS. Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination. Chaos, Solitons Fractals. 2009;40(5):2114–25.

    Article  MATH  MathSciNet  Google Scholar 

  16. Piyawong W, Twizell EH, Gumel AB. An unconditionally convergent finite-difference scheme for the SIR model. Appl Math Comput. 2003;146(2–3):611–25.

    Article  MATH  MathSciNet  Google Scholar 

  17. Ruan SG, Wei JJ. On the zero of some transcendental functions with applications to stability of delay differential equations with two delays. Dyn Contin Discrete Impuls Syst Ser A. 2003;10(1):863–74.

    MATH  MathSciNet  Google Scholar 

  18. Sen M, Banerjee M, Morozov A. Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect. Ecol Complex. 2012;11:12–27.

    Article  Google Scholar 

  19. Song XY, Li SL, Li A. Analysis of a stage-structured predator-prey system with impulsive perturbations and time delays. J Korean Math Soc. 2009;46(1):71–82.

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang X, Tao YD, Song XY. Pusle vaccination on SEIR epidemic model with nonlinear incidence rate. Appl Math Comput. 2009;210(2):398–404.

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang WY, Pei LJ. Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system. Acta Mech Sin. 2011;27(2):285–96.

    Article  MATH  MathSciNet  Google Scholar 

  22. Xu CJ, Liao MX, He XF. Stability and Hopf bifurcation analysis for a Lokta-Volterra predator-prey model with two delays. Int J Appl Math Comput Sci. 2011;21(1):97–107.

    Article  MATH  MathSciNet  Google Scholar 

  23. Xu CJ, Tang XH, LiaoMX. Stability and bifurcation analysis of a delayed predator–prey model of prey dispersal in two-patch environments. Appl Math Comput. 2010;216(10):2920–36.

    Article  MATH  MathSciNet  Google Scholar 

  24. Xu CJ, Tang XH, Liao MX, He XF. Bifurcation analysis in a delayed Lokta-Volterra predator-prey model with two delays. Nonlinear Dynam. 2011;66(1–2):169–83.

    Article  MathSciNet  Google Scholar 

  25. Yang K. Delay differential equations with applications in population dynamics. San Diego: Academic; 1993.

    MATH  Google Scholar 

  26. Zhou XY, Shi XY, Song XY. Analysis of non-autonomous predator-prey model with nonlinear diffusion and time delay. Appl Math Comput. 2008;196(1):129–36.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (no. 11261010), Soft Science and Technology Program of Guizhou Province (no. 2011LKC2030), Natural Science and Technology Foundation of Guizhou Province (J[2012]2100), Governor Foundation of Guizhou Province ([2012]53), Natural Science and Technology Foundation of Guizhou Province (2013) and Doctoral Foundation of Guizhou University of Finance and Economics (2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Li, P. Bifurcation Behaviors Analysis on a Predator–Prey Model with Nonlinear Diffusion and Delay. J Dyn Control Syst 20, 105–122 (2014). https://doi.org/10.1007/s10883-013-9208-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-013-9208-1

Keywords

Mathematics Subject Classification (2010)

Navigation