Skip to main content
Log in

Decay of the timoshenko beam with thermal effect and memory boundary conditions

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the general decay of solutions for a Timoshenko beam with thermal effect and memory conditions working at the boundary. We show that the dissipation produced by the memory effect is independent of the present values of temperature gradient, and is sufficiently strong to produce a general decay result obtained without imposing the condition of equal-speed propagation. The usual exponential and polynomial decay rate are only special cases of the obtained result. This result improves earlier one in the literature on the stability of Timoshenko beam with or without thermal effect obtained under the condition of equal-speed propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. U. Kim and Y. Renardy. Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25 (1987), 1417–1429.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. W. Taylor. A smoothing property of a hyperbolic system and boundary controllability. J. Comput. Appl. Math. 114 (2000), 23–40.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. H. Shi and D. X. Feng. Exponential decay of Timoshenko beam with locally distributed feedback. In: Proceeding of the IFAC World Congress, Beijing, vol. F, 1999.

  4. C. A. Raposo, J. Ferreira, M. L. Santos, and N. N. O. Castro. Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 18 (2005), 535–541.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Soufyane. Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. Paris Sér. I 328 (1999), 731–734.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Ammar-Khodja, A. Benabdallah, J. E. Munoz Rivera, and R. Racke. Energy decay for Timoshenko systems of memory type. J. Differ. Equations 194 (2003), 82–115.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. E. Munoz Rivera and R. Racke. Mildly dissipative nonlinear Timoshenko systems – global existence and exponential stability. J. Math. Anal. Appl. 276 (2002) 248–276.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. T. Öncü and B. T. Moodie. On the constitutive relations for second sound in elastic solids. Arch. Ration. Mech. Anal. 121 (1992), 87–99.

    Article  MATH  Google Scholar 

  9. A. E. Green and P. M. Naghdi. A re-examination of the basic postulates of thermomechanics. Proc. Roy Soc. Lond. Ser. A 432 (1991), 171–194.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. D. Fernandez Sare and R. Racke. On the stability of damped Timoshenko systems: Cattaneo versus Fourier Law. Arch. Rational Mech. Anal. 194 (2009), 221–251.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. A. Messaoudi and B. Said-Houari. Energy decay in a Timoshenkotype system of thermoelasticity of type III. J. Math. Anal. Appl. 348 (2008), 298–307.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. A. Messaoudi and B. Said-Houari. Energy decay in a Timoshenkotype system with history in thermoelasticity of type III. Adv. Difference Equ. 4 (2009), 375–400.

    MathSciNet  Google Scholar 

  13. A. Djebabla and N. E. Tatar. Exponential stabilization of the Timoshenko system by a thermo-viscoelastic damping. J. Dynam Control Syst. 16 (2010), 189–210.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Kafini. General energy decay in a Timoshenko-type system of thermoelasticity of type III with a viscoelastic damping. J. Math. Anal. Appl. 375 (2011), 523–537.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. M. Cavalcanti and A. Guesmia. General decay rates of solutions to a nonlinear wave equation with boundary conditions of memory type. Differential Integral Equations 18 (2005), 583–600.

    MathSciNet  MATH  Google Scholar 

  16. M. L. Santos. Asymptotic behavior of solutions to wave equations with a memory condition at the boundary. Electron. J. Differ. Equations 2001 (2001), 1–11.

    Google Scholar 

  17. S. A. Messaoudi and A. Soufyane. General decay of solutions of a wave equation with a boundary control of memory type. Nonlinear Anal. RWA 11 (2010), 2896–2904.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. M. Cavalcanti and H. P. Oquendo. Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42 (2003), 1310–1324.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano. Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electron. J. Differ. Equations 44 (2002), 1–14.

    MathSciNet  Google Scholar 

  20. M. L. Santos. Decay rates for solutions of a Timoshenko system with a memory condition at the boundary. Abstr. Appl. Anal. 7 (2002), 531–546.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Rapaso. Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary. Nonlinear Anal. TMA 54 (2003), 959–976.

    Article  MATH  Google Scholar 

  22. C. C. S. Tavares and M. L. Santos. On the Kirchhoff plates equations with thermal effects and memory boundary conditions. Appl. Math. Comput. 213 (2009), 25–38.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. A. Messaoudi and A. Soufyane. Boundary stabilization of memory type in thermoelasticity of type III. Appl. Anal. 87 (2008), 13–28.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Soufyane, M. Afilal, T. Aouam and M. Chacha. General decay of solutions of a linear one-dimesional porous-thermoelasaticity system with a boundary control of memory type. Nonlin. Anal. 72 (2010), 3903–3910.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. A. Messaoudi and A. Al-Shehri. General boundary stabilization of memory type thermoelasaticity. J. Math. Phys. 51, 103514 (2010); doi:10.1063/1.3496995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aouadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aouadi, M., Soufyane, A. Decay of the timoshenko beam with thermal effect and memory boundary conditions. J Dyn Control Syst 19, 33–46 (2013). https://doi.org/10.1007/s10883-013-9163-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-013-9163-x

Key words and phrases

2000 Mathematics Subject Classification

Navigation