Skip to main content
Log in

Approximate controllability of semilinear partial functional differential systems

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the approximate controllability of semilinear neutral functional-differential systems and impulsive functional-differential systems with finite delay. Since the considered equations admit nonlinear terms involving spatial derivatives, the fraction power theory and α-norm is used to discuss the problem so that the established results can be applied to them. An example is provided to illustrate the application of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Balasubramaniam and S. K. Ntouyas, Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space. J. Math. Anal. Appl. 324 (2006), 161–176.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. E. Bashirov and N. I. Mahmudov, On concepts of controllability for linear deterministic and stochastic systems. SIAM J. Control Optim. 37 (1999), 1808–1821.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter, Representation and control of infinite-dimensional systems. Vol. 2. Systems and control: Foundations and applications. Birkhäuser, Boston (1993).

    Google Scholar 

  4. E. N. Chuckwu and S. M. Lenhart, Controllability questions for nonlinear systems in abstract spaces. J. Optim. Theory Appl. 68 (1991), 437–462.

    Article  MathSciNet  Google Scholar 

  5. R. Curtain and H. J. Zwart, An introduction to infinite-dimensional linear systems theory. Springer-Verlag, New York (1995).

    MATH  Google Scholar 

  6. J. P. Dauer and N. I. Mahmudov, Approximate controllability of semilinear functional equations in Hilbert spaces. J. Math. Anal. Appl. 273 (2002), 310–327.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. N. Do, A note on approximate controllability of semilinear systems. Systems control Lett. 12 (1989), 365–371.

    Article  MATH  MathSciNet  Google Scholar 

  8. X. Fu and X. Liu, Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay. J. Math. Anal. Appl. 325 (2007), 249–267.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. J. George, Approximate controllability of nonautonomous semilinear systems. Nonlin. Anal. 24 (1995), 1377–1393.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Hale and S. M. Verduyn Lunel, Introduction to functional differential equations. Springer-Verlag, New York (1993).

    MATH  Google Scholar 

  11. E. Hernández and H. R. Henríquez, Existence results for partial neutral functional differential equations with unbounded delay. J. Math. Anal. Appl. 221 (1998), 452–475.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. C. Joshi and N. Sukavanam, Approximate solvability of semilinear operator equations. Nonlinearity 3 (1990), 519–525.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Klamka, Constrained controllability of nonlinear systems J. Math. Anal. Appl. 201 (1996), 365–674.

    Article  MATH  MathSciNet  Google Scholar 

  14. X. Li and J. Yong, Optimal control theory for infinite-dimensional systems. Birkhäuser, Berlin (1995).

    Google Scholar 

  15. K. Naito, Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. 25 (1987), 715–722.

    Article  MATH  MathSciNet  Google Scholar 

  16. _____, Approximate controllability for trajectories of semilinear control systems J. Optim. Theory Appl. 60 (1989), 57–65.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. S. Papageorgiou, Controllability of infinite-dimensional systems with control constraints. J. Math. Anal. Appl. 186 (1994), 523–533.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983).

    MATH  Google Scholar 

  19. B. N. Sadovskii, On a fixed point principle. Funct. Anal. Appl. 1 (1967), 74–76.

    MathSciNet  Google Scholar 

  20. R. Sakthivel, N. I. Mahmudov, and J. H. Kim, Approximate controllability of nonlinear impulsive differential systems. Repts. Math. Phys. 60 (2007), 85–96.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. M. Samoilenko and N. A. Perestyuk, Impulsive differential equations. World Scientific, Singapore (1995).

    MATH  Google Scholar 

  22. C. C. Travis and G. F. Webb, Existence, stability, and compactness in the α-norm for partial functional differential equations. Trans. Amer. Math. Soc. 240 (1978), 129–143.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Wu, Theory and applications of partial functional differential equations. Springer-Verlag (1996).

  24. M. Yamamoto and J. Y. Park, Controllability for parabolic equations with uniformly bounded nonlinear terms. J. Optim. Theory Appl. 66 (1990), 515–532.

    Article  MATH  MathSciNet  Google Scholar 

  25. T. Yang, Impulsive systems and control: Theory and applications. Springer-Verlag, Berlin (2001).

    Google Scholar 

  26. J. Zabczyk, Mathematical control theory. Birkhäuser, Berlin (1992).

    MATH  Google Scholar 

  27. H. X. Zhou, Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim. 21 (1983), 551–565.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianlong Fu.

Additional information

This work is supported by NNSF of China (No. 10671069) and Shanghai Leading Academic Discipline Project (No. B407).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Mei, K. Approximate controllability of semilinear partial functional differential systems. J Dyn Control Syst 15, 425–443 (2009). https://doi.org/10.1007/s10883-009-9068-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-009-9068-x

Keywords and phrases

2000 Mathematics Subject Classification

Navigation