Skip to main content
Log in

Stability and Riesz basis property for general network of strings

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the generation problem of Riesz basis for a general network of strings with joint damping at each vertex. First, we give a basic spectral property of the system operator \( \mathcal{A} \). Under certain conditions, we prove that the spectrum of \( \mathcal{A} \) is distributed in a strip parallel to the imaginary axis. By the discussion of the completeness of generalized eigenvectors of the operator \( \mathcal{A} \), we prove further that there exists a sequence of generalized eigenvectors of \( \mathcal{A} \) that forms a Riesz basis with parentheses in the Hilbert state space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ammari and M. Jellouli, Stabilization of star-shaped tree of elastic strings. Differential Integral Equations 17 (2004), 1395–1410.

    MATH  MathSciNet  Google Scholar 

  2. K. Ammari, M. Jellouli, and M. Khenissi, Stabilization of general trees of strings, J. Dynam. Control Systems 11 (2005), No. 2, 177–193.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. A. Avdonin and S. A. Ivanov, Families of exponentials: The method of moments in controllability problems for distributed parameter systems. Cambridge Univ. Press, Cambridge (1995).

    MATH  Google Scholar 

  4. J. V. Below, A characteristic equation associated to an eigenvalue problem on C 2-networks. Linear Algebra Appl. 71 (1985), 309–325.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Chen, M. C. Delfour, A. M. Krall, and G. Payre, Modeling, stabilization, and control of serially connected beams. SIAM J. Control Optim. 25 (1987), No. 3, 526–546.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Dager, Observation and control of vibrations in tree-shaped networks of strings. SIAM J. Control Optim. 43 (2004), 590–623.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Dager and E. Zuazua, Controllability of star-shaped networks of strings. C. R. Acad. Sci. Paris, Ser. I 332 (2001), No. 7, 621–626.

    MATH  MathSciNet  Google Scholar 

  8. _____, Controllability of tree-shaped networks of strings, C. R. Acad. Sci. Paris, Ser. I 332 (2001), No. 12, 1087–1092.

    MATH  MathSciNet  Google Scholar 

  9. _____, Wave propagation, observation, and control in 1-D flexible multistructures. Math. Appl. 50, Springer-Verlag, Berlin–New York (2006).

    Google Scholar 

  10. B. Dekoninck and S. Nicaise, Control of networks of Euler–Bernoulli beams. ESAIM Control Optim. Calc. Var. 4 (1999), 57–81.

    Article  MATH  MathSciNet  Google Scholar 

  11. _____, The eigenvalue problem for networks of beams. Linear Algebra Appl. 314 (2000), 165–189.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Z. Guo and G. Q. Xu, On basis property of a hyperbolic system with dynamic boundary condition, Differential Integral Equations 18 (2004), No. 1, 35–60.

    MathSciNet  Google Scholar 

  13. B. Z. Guo and Y. Xie, A sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks. SIAM J. Control Optim. 48 (2006), No. 4, 1234–1252.

    MathSciNet  Google Scholar 

  14. Z. J. Han and G. Q. Xu, Analysis of stability for n-connected Timoshenko beams with both ends fixed and feedback controller at intermediate nodes. In: Proc. 25th Chinese Control Conf. (2006).

  15. J. E. Lagnese, G. Leugering, and E. J. P. G. Schmitd, Modelling, analysis, and control of dynamic elastic multi-link structures. Birkhäuser, Basel (1994).

    Google Scholar 

  16. _____, On the analysis and control of hyperbloic systems associated with vibrating networks. Proc. Roy. Soc. Edinburgh Sect. A (1994), 77–104.

  17. G. Leugering and E. Zuazua, Exact controllability of generic trees, Control of systems governed by partial differential equations. In: ESAIM Proc., Nancy, France (1999).

  18. K. S. Liu, F. L. Huang, and G. Chen, Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage. SIAM J. Appl. Math. 49 (1989), 1694–1707.

    Article  MATH  MathSciNet  Google Scholar 

  19. Z. H. Lou, B. Z. Guo, and Ö. Morgül, The stability of linear dimensional systems with application. Springer-Verlag, London (1999).

    Google Scholar 

  20. Yu. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equations in Banach spaces. Stud. Math. 88 (1988), No. 1, 37–42.

    MATH  Google Scholar 

  21. N. Dunford and J. T. Schwartz, Linear operators. Part III. Spectral operators. Wiley-Interscience, New York (1971).

    MATH  Google Scholar 

  22. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983).

    MATH  Google Scholar 

  23. S. Rolewicz, On controllability of systems of strings, Stud. Math. 36 (1970), 105–110.

    MATH  MathSciNet  Google Scholar 

  24. E. J. P. G. Schmidt, On the modelling and exact controllability of networks of vibrating strings. SIAM J. Control Optim. 30 (1992), 229–245.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Q. Xu and B. Z. Guo, Riesz basis property of evolution equations in Hilbert space and application to a coupled string equation. SIAM J. Control Optim. 42 (2003), No. 3, 966–984.

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Q. Xu and S. P. Yung, The expansion of a semigroup and a Riesz basis criterion. J. Differential Equations 210 (2005), 1–24.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Q. Xu, D. Y. Liu, and Y. Q. Liu, Abstract second-order hyperbolic system and applications. SIAM J. Control Optim. 47 (2008), 1762–1784.

    Article  MathSciNet  Google Scholar 

  28. G. Q. Xu, Z. J. Han, and S. P. Yung, Riesz basis property of serially connected Timoshenko beams. Int. J. Control 80 (2007), No. 3, 470–485.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. M. Young, An introduction to nonharmonic Fourier series. Academic Press, London (2001).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ni Guo.

Additional information

This research is supported by the Natural Science Foundation of China grant NSFC-60874034.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni Guo, Y., Qi Xu, G. Stability and Riesz basis property for general network of strings. J Dyn Control Syst 15, 223–245 (2009). https://doi.org/10.1007/s10883-009-9064-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-009-9064-1

Key words and phrases

2000 Mathematics Subject Classification

Navigation