Skip to main content

The Contribution of General Cognitive Abilities and Specific Numerical Abilities to Mathematics Achievement in Students Who are Deaf or Hard-of-Hearing

Abstract

General cognitive and specific numerical abilities that underlay mathematical performance have been heavily investigated among hearing students; however, the inquiry has rarely been applied to students who are deaf or hard-of-hearing (d/Dhh). We examined whether general cognitive abilities (i.e. nonverbal IQ, processing speed, and spatial ability) and specific numerical abilities (i.e. symbolic and non-symbolic numerical magnitude processing) are related to mathematics achievement in 198 d/Dhh students in Grades 3 to 9. The results of our regression models indicated that, the three general cognitive abilities independently explained the variance in mathematics achievement when entered in one step; and spatial ability and processing speed had an independent contribution to mathematics achievement in the presence of the specific numerical abilities. The specific numerical abilities independently explained the variance in mathematics achievement when entered in one step; however, none of them had an independent contribution to mathematics achievement in the presence of the general cognitive abilities. These findings suggested that mathematics achievement in d/Dhh students depended more on general cognitive abilities, such as spatial ability and processing speed, than on specific numerical abilities.

This is a preview of subscription content, access via your institution.

References

  1. Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition: Cognitive abilities and information processing. Journal of Experimental Psychology. General, 117, 288–318.

    Article  Google Scholar 

  2. Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non-symbolic numerical abilities predict mathematical achievements contradict ATOM. Behavioral and Brain Functions, 9(1), 26.

    PubMed  PubMed Central  Article  Google Scholar 

  3. Barbosa, H. H. (2013). Early mathematical abilities in hearing and deaf children. Cadernos CEDES, 33(91), 333–347.

    Article  Google Scholar 

  4. Berg, D. H. (2008). Working memory and arithmetic calculation in children: The contributory roles of processing speed, short-term memory, and reading. Journal of Experimental Child Psychology, 99(4), 288–308.

    PubMed  Article  Google Scholar 

  5. Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388.

    PubMed  Article  PubMed Central  Google Scholar 

  6. Bull, R., & Johnston, R. S. (1997). Children’s arithmetical difficulties: Contributions from processing speed, item identification, and short-term memory. Journal of Experimental Child Psychology, 65(1), 1–24.

    PubMed  Article  Google Scholar 

  7. Bull, R., Marschark, M., Nordmann, E., Sapere, P., & Skene, W. A. (2018). The approximate number system and domain-general abilities as predictors of math ability in children with normal hearing and hearing loss. British Journal of Developmental Psychology, 36(2), 236–254.

    Article  Google Scholar 

  8. Burte, H., Gardony, A. L., Hutton, A., & Taylor, H. A. (2017). Think3d!: Improving mathematical learning through embodied spatial training. Cognitive Research: Principles and Implications, 2(13), 1–18.

    Google Scholar 

  9. Butterworth, B. (2003). Dyscalculia screener. London: nferNelson Pub.

    Google Scholar 

  10. Carr, M., Alexeev, N., Wang, L., Barned, N., Horan, E., & Reed, A. (2018). The development of spatial skills in elementary school students. Child Development, 89(2), 446–460.

    PubMed  Article  PubMed Central  Google Scholar 

  11. Case, R. (1985). Intellectual development. Birth to adulthood. New York: Academic Press.

    Google Scholar 

  12. Casey, B. M., Pezaris, E., Fineman, B., Pollock, A., Demers, L., & Dearing, E. (2015). A longitudinal analysis of early spatial skills compared to arithmetic and verbal skills as predictors of fifth-grade girls’ math reasoning. Learning and Individual Differences, 40, 90–100.

    Article  Google Scholar 

  13. Chen, L., Wang, Y., & Xiao, S. (2019). The mediating effect of intelligence between the information processing speed and numerical magnitude in hearing-impaired children. Chinese Journal of Behavioral Medicine and Brain Science, 38(10), 925–929.

    Google Scholar 

  14. Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11.

    Article  Google Scholar 

  15. Clements, D. H., Sarama, J., Spitler, M. E., & Wolfe, L. C. B. (2011). Mathematical learned by young children in an intervention based on learning trajectories: A large-scale cluster randomized trial. Journal for Research in Mathematical Education, 42(2), 127–166.

    Article  Google Scholar 

  16. Costa, H. M., Nicholson, B., Donlan, C., & Van Herwegen, J. (2018). Low performance on mathematical tasks in preschoolers: The importance of domain-general and domain-specific abilities. Journal of Intellectual Disability Research, 62(4), 292–302.

    PubMed  Article  PubMed Central  Google Scholar 

  17. Cui, J., Georgiou, G. K., Zhang, Y., Li, Y., Shu, H., & Zhou, X. (2017). Examining the relationship between rapid automatized naming and arithmetic fluency in Chinese kindergarten children. Journal of Experimental Child Psychology, 154, 146–163.

    PubMed  Article  Google Scholar 

  18. D’Amico, A., & Passolunghi, M. (2009). Naming speed and effortful and automatic inhibition in children with arithmetic learning disabilities. Learning and Individual Differences, 19, 170–180.

    Article  Google Scholar 

  19. De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55.

    Article  Google Scholar 

  20. Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35, 13–21.

    Article  Google Scholar 

  21. Dowker, A. (1996). How important is spatial ability to mathematics? The Behavioral and Brain Sciences, 19(2), 251.

    Article  Google Scholar 

  22. Durand, M., Hulme, C., Larkin, R., & Snowling, M. (2005). The cognitive foundations of reading and arithmetic skills in 7 -to 10-year-olds. Journal of Experimental Child Psychology, 91(2), 113–136.

    PubMed  Article  PubMed Central  Google Scholar 

  23. Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72.

    PubMed  Article  PubMed Central  Google Scholar 

  24. Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.

    PubMed  Article  PubMed Central  Google Scholar 

  25. Frick, A., Möhring, W., & Newcombe, N. S. (2014). Development of mental transformation abilities. Trends in Cognitive Sciences, 18, 536–542.

    PubMed  Article  PubMed Central  Google Scholar 

  26. Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., & Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29.

    Article  Google Scholar 

  27. Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., & Bryant, J. D. (2010). The contributions of numerosity and domain-general abilities to school readiness. Child Development, 81(5), 1520–1533.

  28. Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114(2), 345.

    PubMed  Article  PubMed Central  Google Scholar 

  29. Geary, D. C., Hoard, M. K., & Hamson, C. O. (1999). Numerical and arithmetical cognition: Patterns of functions and deficits in children at risk for a mathematical disability. Journal of Experimental Child Psychology, 74, 213–239.

    PubMed  Article  PubMed Central  Google Scholar 

  30. Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to mathematic achievement in middle childhood. Journal of Experimental Child Psychology, 163, 107–125.

    PubMed  Article  Google Scholar 

  31. Gottardis, L., Nunes, T., & Lunt, I. (2011). A synthesis of research on deaf and hearing children’s mathematical achievement. Deafness and Education International, 13(3), 131–150.

    Article  Google Scholar 

  32. Green, C. T., Bunge, S. A., Briones Chiongbian, V., Barrow, M., & Ferrer, E. (2017). Fluid reasoning predicts future mathematical performance among children and adolescents. Journal of Experimental Child Psychology, 157, 125–143.

    PubMed  PubMed Central  Article  Google Scholar 

  33. Gross, J. (2009). The long term costs of numeracy difficulties. London, UK: Every Child a Chance Trust (KPMG).

  34. Halper, E. B. (2009). The nature of relationships between mental rotation, math, and language in deaf signers. proquest llc, 112.

  35. Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4(3), 60–68.

    Article  Google Scholar 

  36. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448.

    PubMed  Article  PubMed Central  Google Scholar 

  37. Kelly, M., & Braden, J. P. (1990). Criterion validity of the WISC-R performance scale with the Stanford achievement test -hearing impaired edition. Journal of School Psychology, 28, 147–151.

    Article  Google Scholar 

  38. Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2014). Involvement of working memory in longitudinal development of numerical-magnitude skills. Infant and Child Development, 23, 36–50.

    Article  Google Scholar 

  39. LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767.

    PubMed  Article  PubMed Central  Google Scholar 

  40. Marcelino, L., Sousa, C., Costa, C. (2019). Cognitive foundations of mathematics learning in deaf students: A systematic literature review. Conference: 11th international conference on education and new learning technologies, 1st-3rd July 2019, Palma, Mallorca, Spain. DOI: https://doi.org/10.21125/edulearn.2019.1425.

  41. Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9), e23749.

    PubMed  PubMed Central  Article  Google Scholar 

  42. Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology. General, 145(9), 1206–1227.

    PubMed  Article  Google Scholar 

  43. Moreno, C. (2000). Predictors of mathematics attainment in hearing impaired children. (Unpublished PhD thesis) University of London, UK.

  44. Nath, S., & Szücs, D. (2014). Construction play and cognitive skills associated with the development of mathematical abilities in 7-year-old children. Learning and Instruction, 32(3), 73–80.

    Article  Google Scholar 

  45. Östergren, R., & Träff, U. (2013). Early number knowledge and cognitive ability affect early arithmetic ability. Journal of Experimental Child Psychology, 115(3), 405–421.

    PubMed  Article  Google Scholar 

  46. Passig, D., & Eden, S. (2001). Virtual reality as a tool for improving spatial rotation among deaf and hard-of-hearing children. Cyberpsychology & Behavior, 4(6), 681–686.

    Article  Google Scholar 

  47. Passolunghi, M. C., & Lanfranchi, S. (2012). Domain-specific and domain-general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal of Educational Psychology, 82(1), 42–63.

    Article  Google Scholar 

  48. Passolunghi, M. C., Vercelloni, B., & Schadee, H. (2007). The precursors of mathematics learning: Working memory, phonological ability, and numerical competence. Cognitive Development, 22, 165–184.

    Article  Google Scholar 

  49. Passolunghi, M. C., Mammarella, I. C., & Altoè, G. (2008). Cognitive abilities as precursors of the early acquisition of mathematical skills during first through second grades. Developmental Neuropsychology, 33, 229–250.

    PubMed  Article  Google Scholar 

  50. Passolunghi, M. C., Cargnelutti, E., & Pastore, M. (2014). The contribution of general cognitive abilities and approximate number system to early mathematics. British Journal of Educational Psychology, 84(4), 631–649.

    Article  Google Scholar 

  51. Passolunghi, M. C., Lanfranchi, S., Altoè, G., & Sollazzo, N. (2015). Early numerical abilities and cognitive skills in kindergarten children. Journal of Experimental Child Psychology, 135, 25–42.

    PubMed  Article  PubMed Central  Google Scholar 

  52. Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24, 1037.

    PubMed  Article  PubMed Central  Google Scholar 

  53. Raven, J. (2000). The Raven's progressive matrices: Change and stability over culture and time. Cognitive Psychology, 41(1), 1–48.

    PubMed  Article  PubMed Central  Google Scholar 

  54. Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24, 1301–1308.

    PubMed  Article  Google Scholar 

  55. Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 0–92.

  56. Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number–space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418–431.

    PubMed  Article  Google Scholar 

  57. Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., et al. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20, e12372.

    Article  Google Scholar 

  58. Skagerlund, K., & Träff, U. (2016). Processing of space, time, and number contributes to mathematical abilities above and beyond domain-general cognitive abilities. Journal of Experimental Child Psychology, 143, 85–101.

    PubMed  Article  Google Scholar 

  59. Soltani A., & Mirhosseini S. (2019). The contribution of general cognitive abilities and specific number skills toward arithmetic performance in students with mild intellectual disability. International Journal of Disability, Development and Education https://doi.org/10.1080/1034912X.2019.1619673.

  60. Sorby, S., Veurink, N., & Streiner, S. (2018). Does spatial skills instruction improve STEM outcomes? The answer is ‘yes’. Learning and Individual Differences, 67, 209–222.

    Article  Google Scholar 

  61. Swanwick, R., Oddy, A., & Roper, T. (2005). Mathematics and deaf children: An exploration of barriers to success. Deafness and Education International, 7(1), 1–21.

    Article  Google Scholar 

  62. Taub, G. E., Keith, T. Z., Floyd, R. G., & Mcgrew, K. S. (2008). Effects of general and broad cognitive abilities on mathematics achievement. School Psychology Quarterly, 23(2), 187–198.

    Article  Google Scholar 

  63. Träff, U. (2013). The contribution of general cognitive abilities and number abilities to different aspects of mathematics in children. Journal of Experimental Child Psychology, 116(2), 139–156.

    PubMed  Article  PubMed Central  Google Scholar 

  64. Umiltà, C., Priftis, K., & Zorzi, M. (2009). The spatial representation of numbers: Evidence from neglect and pseudoneglect. Experimental Brain Research, 192(3), 561–569.

    PubMed  Article  PubMed Central  Google Scholar 

  65. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotation, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604.

    PubMed  Article  PubMed Central  Google Scholar 

  66. Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., Newcombe, N. S., Filipowicz, A. T., & Chang, A. (2014). Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematical skills. Child Development, 85(3), 1062–1076.

    PubMed  Article  PubMed Central  Google Scholar 

  67. von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49, 868–873.

    Article  Google Scholar 

  68. Wei, W., Lu, H., Zhao, H., Chen, C., Dong, Q., & Zhou, X. (2012). Gender differences in children's arithmetic performance are accounted for by gender differences in language abilities. Psychological Science, 23(3), 320–330.

    PubMed  Article  PubMed Central  Google Scholar 

  69. Willburger, E., Fussenegger, B., Moll, K., Wood, G., & Landerl, K. (2008). Naming speed in dyslexia and dyscalculia. Learning and Individual Differences, 18, 224–236.

    Article  Google Scholar 

  70. Wood, D., Wood, H., Griffiths, A., & Howarth, I. (1986). Teaching and talking to deaf children. Chichester: John Wiley.

    Google Scholar 

  71. Xenidou-Dervou, I., De Smedt, B., van der Schoot, M., & van Lieshout, E. C. D. M. (2013). Individual differences in kindergarten math achievement: The integrative roles of approximation skills and working memory. Learning and Individual Differences, 28, 119–129.

    Article  Google Scholar 

  72. Xenidou-Dervou, I. , Molenaar, D. , Ansari, D. , Menno, V. D. S. , & Van Lieshout, E. C. D. M.. (2016). Nonsymbolic and symbolic magnitude comparison skills as longitudinal predictors of mathematical achievement. Learning & Instruction, S0959475216302158.

  73. Xie, F., Zhang, L., Chen, X., & Xin, Z. (2020). Is spatial ability related to mathematical ability: A meta-analysis. Educational Psychology Review, 32, 113–155.

    Article  Google Scholar 

  74. Zarfaty, Y., Nunes, T., & Bryant, P. (2004). The performance of young deaf children in spatial and temporal number task. Journal of Deaf Studies and Deaf Education, 9, 315–326.

    PubMed  Article  PubMed Central  Google Scholar 

  75. Zhang, X., Koponen, T., Räsänen, P., Aunola, K., Lerkkanen, M.-K., & Nurmi, J.-E. (2014). Linguistic and spatial skills predict early arithmetic development via counting sequence knowledge. Child Development, 85(3), 1091–1107.

    PubMed  Article  PubMed Central  Google Scholar 

  76. Zhou, X., Chen, Y., Chen, C., Jiang, T., Zhang, H., & Dong, Q. (2007). Chinese kindergartners’ automatic processing of numerical magnitude in Stroop-like tasks. Memory & Cognition, 35(3), 464–470.

    Article  Google Scholar 

  77. Zhou, X., Wei, W., Zhang, Y., Cui, J., & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6, 1364.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work reported here was undertaken as part of a study supported by the Humanities and Social Science Fund of Ministry of Education of China [Grant Number 19YJA880002] and the Philosophy and Social Science Foundation of Hainan Province in China [Grant Number HNSK(YB)19–36].

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lilan Chen or Yan Wang.

Ethics declarations

Conflict of Interest

The researcher has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Inform Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, Y. The Contribution of General Cognitive Abilities and Specific Numerical Abilities to Mathematics Achievement in Students Who are Deaf or Hard-of-Hearing. J Dev Phys Disabil 33, 771–787 (2021). https://doi.org/10.1007/s10882-020-09772-8

Download citation

Keywords

  • Deaf or hard-of-hearing students
  • Mathematics achievement
  • General cognitive abilities
  • Specific numerical abilities