Advertisement

Microswitch-Cluster Technology for Promoting Occupation and Reducing Hand Biting of Six Adolescents with Fragile X Syndrome: New Evidence and Social Rating

  • Viviana Perilli
  • Fabrizio Stasolla
  • Alessandro O. Caffò
  • Vincenza Albano
  • Fiora D’Amico
ORIGINAL ARTICLE
  • 9 Downloads

Abstract

We further extended the use of microswitch-cluster technology for promoting occupational activities and reducing hand biting of six adolescents with fragile X syndrome and severe to profound developmental disabilities. The primary rehabilitative goal was to enhance the adaptive response (i.e., inserting three different objects in the three containers within a 4 s time interval). The secondary objective was to evaluate the effects of the intervention on indices of positive participation as outcome measure of the participants ‘quality of life. Finally, a social validation assessment involving sixty-six external raters was conducted. The study was carried out according to an ABB1AB1 experimental sequence for each participant. Thus, A indicated baselines, B indicated the intervention focused on promoting the adaptive response irrespective of the challenging behavior, and B1 indicated the cluster phases with the provision of positive stimulation only if the adaptive response was exhibited with the absence of the challenging behavior. A one-year follow-up was implemented. Results showed an improved performance for all the participants, which was maintained over the time. Indices of positive participation increased as well. Social raters favorably scored the use of the microswitch-cluster technology. Clinical, educational, psychological, and rehabilitative implications of the findings were critically discussed.

Keywords

Fragile X syndrome Cluster technology Quality of life Positive participation Social validation 

Notes

Funding

The authors received no financial support for the research, authorship, and publication of the article.

Compliance with Ethical Standards

Ethical Approval

All performed procedures of the study have been carried out in accordance with Helsinki Declaration (1964) and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained for all the recruited participants by their legal representatives (i.e., their parents).

Conflict of Interest

The authors declared no conflicts of interest with respect to the research, authorship, and/or publication of the article. The authors alone are responsible for the content and the writing of the article.

References

  1. Alborz, A. (2017). The nature of quality of life: A conceptual model to inform assessment. Journal of Policy and Practice in Intellectual Disabilities, 14, 15–30.  https://doi.org/10.1111/jppi.12225.CrossRefGoogle Scholar
  2. Barlow, D. H., Nock, M., & Hersen, M. (2009). Single-case experimental designs: Strategies for studying behavior changes. New York: Allyn & Bacon.Google Scholar
  3. Budimirovic, D. B., Berry-Kravis, E., Erickson, C. A., Hall, S. S., Hessl, D., Reiss, A. L., et al. (2017). Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. Journal of Neurodevelopmental Disorders, 9(1), 14.  https://doi.org/10.1186/s11689-017-9193-x.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Caffò, A. O., Hoogeveen, F., Groenendaal, M., Perilli, V. A., Damen, M., Stasolla, F., Lancioni, G. E., & Bosco, A. (2014). Comparing two different orientation strategies for promoting indoor traveling in people with Alzheimer's disease. Research in Developmental Disabilities, 35, 572–580.CrossRefGoogle Scholar
  5. Catania, A. C. (2012). Learning (5th ed.). New York: Sloan Publishing.Google Scholar
  6. Chiapparino, C., Stasolla, F., de Pace, C., & Lancioni, G. E. (2011). A touch pad and a scanning keyboard emulator to facilitate writing by a woman with extensive motor disability. Life Span and Disability, 14, 45–54.Google Scholar
  7. Cornish, K. M., Turk, J., Wilding, J., Sudhalter, V., Munir, F., Kooy, F., & Hagerman, R. (2004). Annotation: Deconstructing the attention deficit in fragile X syndrome: A developmental neuropsychological approach. Journal of Child Psychology and Psychiatry and Allied Disciplines, 45, 1042–1053.CrossRefGoogle Scholar
  8. Crawford, M. R., & Schuster, J. W. (1993). Using microswitches to teach toy use. Journal of Developmental and Physical Disabilities, 5, 349–368.  https://doi.org/10.1007/BF01046391.CrossRefGoogle Scholar
  9. Fabio, R. A., & Caprì, T. (2015). Autobiographical memory in ADHD subtypes. Journal of Intellectual and Developmental Disability, 40, 26–36.  https://doi.org/10.3109/13668250.2014.983057.CrossRefGoogle Scholar
  10. Fabio, R. A., Gangemi, A., Capri, T., Budden, S., & Falzone, A. (2018). Neurophysiological and cognitive effects of transcranial direct current stimulation in three girls with Rett syndrome with chronic language impairments. Research in Developmental Disabilities, 76, 76–87.  https://doi.org/10.1016/j.ridd.2018.03.008.CrossRefPubMedGoogle Scholar
  11. Fisch, G. S., Carpenter, N., Howard-Peebles, P. N., Holden, J. J. A., Tarleton, J., Simensen, R., & Battaglia, A. (2012). Developmental trajectories in syndromes with intellectual disability, with a focus on wolf-Hirschhorn and its cognitive behavioral profile. American Journal on Intellectual and Developmental Disabilities, 117, 167–179.  https://doi.org/10.1352/1944-7558-117.2.167.CrossRefPubMedGoogle Scholar
  12. Haessler, F., Gaese, F., Huss, M., Kretschmar, C., Brinkman, M., Peters, H., . . . Pittrow, D. (2016). Characterization, treatment patterns, and patient-related outcomes of patients with fragile X syndrome in Germany: Final results of the observational EXPLAIN-FXS study. BMC Psychiatry, 16(1).  https://doi.org/10.1186/s12888-016-1020-5.
  13. Hardiman, R. L., & McGill, P. (2017). The topographies and operant functions of challenging behaviours in fragile X syndrome: A systematic review and analysis of existing data. Journal of Intellectual and Developmental Disability, 42, 190–203.  https://doi.org/10.3109/13668250.2016.1225952.CrossRefGoogle Scholar
  14. Hardiman, R. L., & McGill, P. (2018). How common are challenging behaviours amongst individuals with fragile X syndrome? A systematic review. Research in Developmental Disabilities, 76, 99–109.  https://doi.org/10.1016/j.ridd.2018.02.020.CrossRefPubMedGoogle Scholar
  15. Hare, E. B., Hagerman, R. J., & Lozano, R. (2014). Targeted treatments in fragile X syndrome. Expert Opinion on Orphan Drugs, 2, 531–543.  https://doi.org/10.1517/21678707.2014.903795.CrossRefGoogle Scholar
  16. Hastie, T., Tibshirani, R., & Friedman, F. (2009). The elements of statistical learning: Data mining, inference, and prediction (Second ed.). New York: Springer.Google Scholar
  17. Kazdin, A. E. (2001). Behavior modification in applied settings. Belmont, CA: Wadsworth.Google Scholar
  18. Lancioni, G. E., & Singh, N. N. (2014). Assistive technologies for people with diverse abilities. New York: Springer.CrossRefGoogle Scholar
  19. Lancioni, G. E., Singh, N. N., Oliva, D., Scalini, L., & Groeneweg, J. (2003). Microswitch clusters to enhance non-spastic response schemes with students with multiple disabilities. Disability and Rehabilitation, 25, 301–304.  https://doi.org/10.1080/0963828021000031179.CrossRefPubMedGoogle Scholar
  20. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Oliva, D., Scalini, L., Vigo, C. M., & Groeneweg, J. (2004a). Microswitch clusters to support responding and appropriate posture of students with multiple disabilities: Three case evaluations. Disability and Rehabilitation, 26, 501–505.  https://doi.org/10.1080/09638280410001672463.CrossRefPubMedGoogle Scholar
  21. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Oliva, D., Scalini, L., & Groeneweg, J. (2004b). Improving assisted ambulation in a man with multiple disabilities through the use of a microswitch cluster. Behavioural and Cognitive Psychotherapy, 32, 245–249.  https://doi.org/10.1017/S1352465804001201.CrossRefGoogle Scholar
  22. Lancioni, G. E., Comes, M. L., Stasolla, F., Manfredi, F., O'Reilly, M. F., & Singh, N. N. (2005a). A microswitch cluster to enhance arm-lifting responses without dystonic head tilting by a child with multiple disabilities. Perceptual and Motor Skills, 100, 892–894.  https://doi.org/10.2466/PMS.100.3.892-894.CrossRefPubMedGoogle Scholar
  23. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Oliva, D., & Basili, G. (2005b). An overview of research on increasing indices of happiness of people with severe/profound intellectual and multiple disabilities. Disability and Rehabilitation, 27, 83–93.CrossRefGoogle Scholar
  24. Lancioni, G. E., O'Reilly, M. F., Singh, N. N., Oliva, D., Scalini, L., Vigo, C. M., & Groeneweg, J. (2005c). Microswitch clusters to enhance adaptive responses and head control: A programme extension for three children with multiple disabilities. Disability and Rehabilitation, 27, 637–641.  https://doi.org/10.1080/09638280500030472.CrossRefPubMedGoogle Scholar
  25. Lancioni, G. E., O'Reilly, M. F., Singh, N. N., Oliva, D., Scalini, L., Vigo, C. M., & Groeneweg, J. (2005d). Further evaluation of microswitch clusters to enhance hand response and head control in persons with multiple disabilities. Perceptual and Motor Skills, 100, 689–694.  https://doi.org/10.2466/PMS.100.3.689-694.CrossRefPubMedGoogle Scholar
  26. Lancioni, G. E., O'Reilly, M. F., Singh, N. N., Oliva, D., Scalini, L., Vigo, C. M., & Groeneweg, J. (2005e). Micro-switch clusters to enhance hand responses and appropriate head position in two children with multiple disabilities. Pediatric Rehabilitation, 8, 59–62.  https://doi.org/10.1080/13638490410001727446.CrossRefPubMedGoogle Scholar
  27. Lancioni, G. E., O'Reilly, M. F., Singh, N. N., Sigafoos, J., Oliva, D., Baccani, S., & Groeneweg, J. (2006). Microswitch clusters promote adaptive responses and reduce finger mouthing in a boy with multiple disabilities. Behavior Modification, 30, 892–900.  https://doi.org/10.1177/0145445505283416.CrossRefPubMedGoogle Scholar
  28. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Sigafoos, J., Oliva, D., Pidala, S., . . . Bosco, A. (2007a). Promoting adaptive foot movements and reducing hand mouthing and eye poking in a boy with multiple disabilities through microswitch technology. Cognitive Behaviour Therapy, 36, 85–90.  https://doi.org/10.1080/16506070601097999.CrossRefPubMedGoogle Scholar
  29. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Sigafoos, J., Oliva, D., Severini, L., . . . Tamma, M. (2007b). Microswitch technology to promote adaptive responses and reduce mouthing in two children with multiple disabilities. Journal of Visual Impairment and Blindness, 101, 628–636.Google Scholar
  30. Lancioni, G. E., Smaldone, A., O'Reilly, M. F., Singh, N. N., Sigafoos, J., Oliva, D., & Bosco, A. (2007c). Promoting adaptive hand responding and reducing face hiding in a woman with profound developmental disabilities using microswitch technology. Behavioural and Cognitive Psychotherapy, 35, 225–230.  https://doi.org/10.1017/S1352465806003353.CrossRefGoogle Scholar
  31. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Sigafoos, J., Didden, R., Oliva, D., & Severini, L. (2007d). Fostering adaptive responses and head control in students with multiple disabilities through a microswitch-based program: Follow-up assessment and program revision. Research in Developmental Disabilities, 28, 187–196.  https://doi.org/10.1016/j.ridd.2006.02.005.CrossRefPubMedGoogle Scholar
  32. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Sigafoos, J., Didden, R., Smaldone, A., & Oliva, D. (2008a). Helping a man with multiple disabilities increase object-contact responses and reduce hand stereotypy via a microswitch cluster program. Journal of Intellectual and Developmental Disability, 33, 349–353.  https://doi.org/10.1080/13668250802441664.CrossRefPubMedGoogle Scholar
  33. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Sigafoos, J., Oliva, D., Gatti, M., . . . Groeneweg, J. (2008b). A microswitch-cluster program to foster adaptive responses and head control in students with multiple disabilities: Replication and validation assessment. Research in Developmental Disabilities, 29, 373–384.  https://doi.org/10.1016/j.ridd.2007.06.007.CrossRefPubMedGoogle Scholar
  34. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Sigafoos, J., Didden, R., Oliva, D., & Cingolani, E. (2008c). A girl with multiple disabilities increases object manipulation and reduces hand mouthing through a microswitch-based program. Clinical Case Studies, 7, 238–249.  https://doi.org/10.1177/1534650107307478.CrossRefGoogle Scholar
  35. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Sigafoos, J., Didden, R., & Oliva, D. (2009). Two boys with multiple disabilities increasing adaptive responding and curbing dystonic/spastic behavior via a microswitch-based program. Research in Developmental Disabilities, 30, 378–385.  https://doi.org/10.1016/j.ridd.2008.07.005.CrossRefPubMedGoogle Scholar
  36. Lancioni, G., O'Reilly, M., Singh, N., D'Amico, F., Ricci, I., & Buonocunto, F. (2011). Microswitch-cluster technology to enhance adaptive engagement and head upright by a post-coma man with multiple disabilities. Developmental Neurorehabilitation, 14, 60–64.  https://doi.org/10.3109/17518423.2010.526170.CrossRefGoogle Scholar
  37. Lancioni, G. E., Sigafoos, J., O'Reilly, M. F., & Singh, N. N. (2012). Assistive technology. In Interventions for individual with severe/profound and multiple disabilities. New York: Springer.Google Scholar
  38. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Sigafoos, J., Oliva, D., Boccasini, A., . . . Sasanelli, G. (2013a). Persons with multiple disabilities increase adaptive responding and control inadequate posture or behavior through programs based on microswitch-cluster technology. Research in Developmental Disabilities, 34, 3411–3120.  https://doi.org/10.1016/j.ridd.2013.07.014.CrossRefPubMedGoogle Scholar
  39. Lancioni, G. E., O'Reilly, M. F., Singh, N. N., Sigafoos, J., Oliva, D., Alberti, G., . . . Lang, R. (2013b). Technology-based programs to support adaptive responding and reduce hand mouthing in two persons with multiple disabilities. Journal of Developmental and Physical Disabilities, 25, 65–77.  https://doi.org/10.1007/s10882-012-9303-3.CrossRefGoogle Scholar
  40. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Sigafoos, J., Alberti, G., Perilli, V., . . . Groeneweg, J. (2014a). People with multiple disabilities learn to engage in occupation and work activities with the support of technology-aided programs. Research in Developmental Disabilities, 35, 1264–1271.  https://doi.org/10.1016/j.ridd.2014.03.026.CrossRefPubMedGoogle Scholar
  41. Lancioni, G. E., Singh, N. N., O'Reilly, M. F., Sigafoos, J., Renna, C., Pinto, K., . . . Stasolla, F. (2014b). Persons with moderate alzheimer's disease use simple technology aids to manage daily activities and leisure occupation. Research in Developmental Disabilities, 35, 2117–2128.  https://doi.org/10.1016/j.ridd.2014.05.002.CrossRefPubMedGoogle Scholar
  42. Machalicek, W., McDuffie, A., Oakes, A., Ma, M., Thurman, A. J., Rispoli, M. J., & Abbeduto, L. (2014). Examining the operant function of challenging behavior in young males with fragile X syndrome: A summary of 12 cases. Research in Developmental Disabilities, 35, 1694–1704.  https://doi.org/10.1016/j.ridd.2014.03.014.CrossRefPubMedGoogle Scholar
  43. Mirrett, P. L., Roberts, J. E., & Price, J. (2003). Early intervention practices and communication intervention strategies for young males with fragile X syndrome. Language, Speech, and Hearing Services in Schools, 34, 320–331.CrossRefGoogle Scholar
  44. Morel, A., Peyroux, E., Leleu, A., Favre, E., Franck, N., & Demily, C. (2018). Overview of social cognitive dysfunctions in rare developmental syndromes with psychiatric phenotype. Frontiers in Pediatrics, 6.Google Scholar
  45. Nazareth, T., Li, N., Marynchenko, M., Zhou, Z., Chopra, P., Signorovitch, J., et al. (2016). Burden of illness among patients with fragile X syndrome (FXS): A medic-aid perspective. Current Medical Research and Opinion, 32, 405–416.  https://doi.org/10.1185/03007995.2015.1119678.CrossRefPubMedGoogle Scholar
  46. Pedhazur, E., & Schmelkin, L. (1991). Measurement design and analysis: An integrated approach. New York: Psychology Press.Google Scholar
  47. Perilli, V., Lancioni, G. E., Hoogeveen, F., Caffò, A. O., Singh, N. N., O’Reilly, M. F., et al. (2013a). Video prompting versus other instruction strategies for persons with Alzheimer’s disease. American Journal of Alzheimer's Disease & Other Dementias, 28, 393–402.CrossRefGoogle Scholar
  48. Perilli, V., Lancioni, G. E., Laporta, D., Paparella, A., Caffò, A. O., Singh, N. N., O’Reilly, M. F., Sigafoos, J., & Oliva, D. (2013b). Computer-aided telephone system for enabling five persons with Alzheimer's disease to make phone calls independently. Research in Developmental Disabilities, 34, 1991–1997.CrossRefGoogle Scholar
  49. Perry, A., Flanagan, H. E., Dunn Geier, J., & Freeman, N. L. (2009). Brief report: The Vineland adaptive behavior scales in young children with autism spectrum disorders at different cognitive levels. Journal of Autism and Developmental Disorders, 39, 1066–1078.  https://doi.org/10.1007/s10803-00907049.CrossRefPubMedGoogle Scholar
  50. Purugganan, O. (2018). Intellectual disabilities. Pediatrics in Review, 39, 299–309.CrossRefGoogle Scholar
  51. Reichle, J. (2011). Evaluating assistive technology in the education of persons with severe disabilities. Journal of Behavioral Education, 20, 77–85.CrossRefGoogle Scholar
  52. Siegel, S., & Castellan, N. J. (1988). Non parametric statistics. New York: McGraw Hill.Google Scholar
  53. Stasolla, F., & De Pace, C. (2014). Assistive technology to promote leisure and constructive engagement by two boys emerged from a minimal conscious state. NeuroRehabilitation, 35, 253–259.  https://doi.org/10.3233/NRE-141112.CrossRefPubMedGoogle Scholar
  54. Stasolla, F., & Perilli, V. (2015). Microswitch-based programs (MBP) to promote communication, occupation, and leisure skills for children with multiple disabilities: A literature overview. In N. Silton (Ed.), Recent advances in assistive technologies to support children with developmental disorders (pp. 195–216). Hershey: IGI Global.  https://doi.org/10.4018/978-1-4666-8395-2.CrossRefGoogle Scholar
  55. Stasolla, F., Boccasini, A., Perilli, V., Caffò, A. O., Damiani, R., & Albano, V. (2014a). A selective overview of microswitch-based programs for promoting adaptive behaviors of children with developmental disabilities. International Journal of Ambient Computing and Intelligence, 6, 56–74.  https://doi.org/10.4018/IJACI.2014070104.CrossRefGoogle Scholar
  56. Stasolla, F., Damiani, R., Perilli, V., Di Leone, A., Albano, V., Stella, A., & Damato, C. (2014b). Technological supports to promote choice opportunities by two children with fragile X syndrome and severe to profound developmental disabilities. Research in Developmental Disabilities, 35, 2993–3000.  https://doi.org/10.1016/j.ridd.2014.07.045.CrossRefPubMedGoogle Scholar
  57. Stasolla, F., Perilli, V., Damiani, R., Caffò, A. O., Di Leone, A., Albano, V., . . . Damato, C. (2014c). A microswitch-cluster program to enhance object manipulation and to reduce hand mouthing by three boys with autism spectrum disorders and intellectual disabilities. Research in Autism Spectrum Disorders, 8, 1071–1078. : https://doi.org/10.1016/j.rasd.2014.05.016.CrossRefGoogle Scholar
  58. Stasolla, F., Caffò, A. O., Damiani, R., Perilli, V., Di Leone, A., & Albano, V. (2015). Assistive technology-based programs to promote communication and leisure activities by three children emerged from a minimal conscious state. Cognitive Processing, 16, 69–78.  https://doi.org/10.1007/s10339014-0625-1.
  59. Stasolla, F., Boccasini, A., & Perilli, V. (2016a). Assistive technology-based programs to supportadaptive behaviors by children with autism spectrum disorders: A literature overview. In Y. Kats (Ed.). Supporting the education of children with autism spectrum disorders (pp. 140–159). Hershey:IGI Global.  https://doi.org/10.4018/978-1-52250816-8.
  60. Stasolla, F., Perilli, V., & Boccasini, A. (2016b). Assistive technologies for persons with severe-profound intellectual and developmental disabilities. In J. K. Luiselli & A. J. Fischer (Eds.), Computer-assisted and web-based innovations in psychology, special education, and health (pp. 287–310). Amsterdam: Elsevier.  https://doi.org/10.1016/B978-0-12-802075-3.00011-5.CrossRefGoogle Scholar
  61. Stasolla, F., Perilli, V., Caffò, A. O., Boccasini, A., Stella, A., Damiani, R., et al. (2017a). Extending microswitch-cluster programs to promote occupation activities and reduce mouthing by six children with autism spectrum disorders and intellectual disabilities. Journal of Developmental and Physical Disabilities, 29, 307–324.  https://doi.org/10.1007/s10882-016-9525-x.CrossRefGoogle Scholar
  62. Stasolla, F., Perilli, V., Damiani, R., & Albano, V. (2017b). Assistive technology to promote occupation and reduce mouthing by three boys with fragile X syndrome. Developmental Neurorehabilitation, 20, 185–193.  https://doi.org/10.3109/17518423.2015.1133724.CrossRefPubMedGoogle Scholar
  63. Stasolla, F., Caffò, A. O., Perilli, V., Boccasini, A., Damiani, R., & D’Amico, F. (in press, 2018). Assistive technology for promoting adaptive skills of children with cerebral palsy: Ten cases evaluation. Disability and Rehabilitation: Assistive Technology, 1–14.  https://doi.org/10.1080/17483107.2018.1467972.
  64. Wehmeyer, M. L., & Abery, B. H. (2013). Self-determination and choice. Intellectual and Developmental Disabilities, 51, 399–411.  https://doi.org/10.1352/1934-9556-51.5.399.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Villa Apelusion Medical Care CenterBariItaly
  2. 2.Università “Giustino Fortunato” of BeneventoBeneventoItaly
  3. 3.Department of Educational Sciences, Psychology, CommunicationUniversity of BariBariItaly
  4. 4.Villa Argento Medical Care CenterLocorotondoItaly

Personalised recommendations