Skip to main content

Modeling the relationship between fairness concern and customer loyalty in dual distribution channel

Abstract

With the rapid growth of the online market, the e-tailer platform has accumulated loyal consumers, which has caused e-tailers to be more concerned about fairness, especially by paying more attention to manufacturers’ profits earned from the e-commerce platform. We build a dual-channel model and consider whether an e-tailer and manufacturer should be fair minded. We find that the platform will care about fairness only when the proportion of loyal customers is at a medium level. When the proportion of loyal customers is greater, whether e-tailers are fair minded will make no difference. Given that the e-tailer cares about fairness, the manufacturer will also be fair-minded when there is a moderate proportion of loyal customers. When the proportion of loyal customers is greater, the manufacturer will not be fair minded. When only the e-tailer is concerned about fairness, the loyal consumer will be worse off if there is a larger proportion of loyal consumers, and a case where both the e-tailer and manufacturer care about fairness shows the opposite trend. When only the e-tailer is concerned about fairness, the normal consumer will always be better off. When both supply chain members care about fairness, the normal consumer will be worse off if the proportion of loyal consumers is greater.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Data available on request from the authors.

References

  • Arya A, Mittendorf B, Sappington DE (2007) The bright side of supplier encroachment. Mark Sci 26(5):651–659

    Article  Google Scholar 

  • Cachon GP, Swinney R (2009) Purchasing, pricing, and quick response in the presence of strategic consumers. Manage Sci 55(3):497–511

    Article  MATH  Google Scholar 

  • Cai GG (2010) Channel selection and coordination in dual-channel supply chains. J Retail 86(1):22–36

    Article  Google Scholar 

  • Cattani K, Gilland W, Heese HS, Swaminathan J (2006) Boiling frogs: Pricing strategies for a manufacturer adding a direct channel that competes with the traditional channel. Prod Oper Manag 15(1):40–56

    Article  Google Scholar 

  • Chiang WYK, Chhajed D, Hess JD (2003) Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design. Manage Sci 49(1):1–20

    Article  MATH  Google Scholar 

  • Cui TH, Raju JS, Zhang ZJ (2007) Fairness and channel coordination. Manage Sci 53(8):1303–1314

    Google Scholar 

  • Du S, Wei L, Zhu Y, Nie T (2018) Peer-regarding fairness in supply chain. Int J Prod Res 56(10):3384–3396

    Article  Google Scholar 

  • Gallego G, Phillips R, Şahin Ö (2008) Strategic management of distressed inventory. Prod Oper Manag 17(4):402–415

    Article  Google Scholar 

  • Ha A, Long X, Nasiry J (2016) Quality in supply chain encroachment. Manuf Serv Oper Manag 18(2):280–298

    Article  Google Scholar 

  • Hebblethwaite D, Parsons AG, Spence MT (2017) How brand loyal shoppers respond to three different brand discontinuation scenarios. Eur J Market 51(11–12):1918–1937

    Article  Google Scholar 

  • Ho TH, Su X, Wu Y (2014) Distributional and peer-induced fairness in supply chain contract design. Prod Oper Manag 23(2):161–175

    Article  Google Scholar 

  • Huang W, Swaminathan JM (2009) Introduction of a second channel: implications for pricing and profits. Eur J Oper Res 194(1):258–279

    Article  MATH  Google Scholar 

  • Jerath K, Netessine S, Veeraraghavan SK (2010) Revenue management with strategic customers: last-minute selling and opaque selling. Manage Sci 56(3):430–448

    Article  MATH  Google Scholar 

  • Katok E, Olsen T, Pavlov V (2014) Wholesale pricing under mild and privately known concerns for fairness. Prod Oper Manag 23(2):285–302

    Article  Google Scholar 

  • Kim BD, Shi M, Srinivasan K (2001) Reward programs and tacit collusion. Mark Sci 20(2):99–120

    Article  Google Scholar 

  • Levin Y, McGill J, Nediak M (2009) Dynamic pricing in the presence of strategic consumers and oligopolistic competition. Manage Sci 55(1):32–46

    Article  MATH  Google Scholar 

  • Li Z, Gilbert SM, Lai G (2015) Supplier encroachment as an enhancement or a hindrance to nonlinear pricing. Prod Oper Manag 24(1):89–109

    Article  Google Scholar 

  • Liu Q, Van Ryzin GJ (2008) Strategic capacity rationing to induce early purchases. Manage Sci 54(6):1115–1131

    Article  MATH  Google Scholar 

  • Mantin B, Krishnan H, Dhar T (2014) The strategic role of third-party marketplaces in retailing. Prod Oper Manag 23(11):1937–1949

    Article  Google Scholar 

  • Markovic S, Iglesias O, Singh JJ, Sierra V (2018) How does the perceived ethicality of corporate services brands influence loyalty and positive word-of-mouth? Analyzing the roles of empathy, affective commitment, and perceived quality. J Bus Ethics 148(4):721–740

    Article  Google Scholar 

  • Meyer-Waarden L (2007) The effects of loyalty programs on customer lifetime duration and share of wallet. J Retail 83(2):223–236

    Article  Google Scholar 

  • Nie T, Du S (2017) Dual-fairness supply chain with quantity discount contracts. Eur J Oper Res 258(2):491–500

    Article  MathSciNet  MATH  Google Scholar 

  • Niu B, Cui Q, Zhang J (2017) Impact of channel power and fairness concern on supplier’s market entry decision. J Oper Res Soc 68(12):1570–1581

    Article  Google Scholar 

  • Osadchiy N, Vulcano G (2010) Selling with binding reservations in the presence of strategic consumers. Manage Sci 56(12):2173–2190

    Article  MATH  Google Scholar 

  • Pan K, Cui Z, Lu Q (2018) Impact of fairness concern on retailer-dominated supply chain. In 2018 15th International conference on service systems and service management (ICSSSM) (pp. 1–6). IEEE

  • Sehgal V (2014) Forrester research online retail forecast, 2013 to 2018. Forrester Research. Retrieved March 21, from http://www.forrester.com/Forrester-Research-Online-Retail-Forecast-2013-To-2018-US/fulltext/-/E-RES115941

  • Su X (2007) Intertemporal pricing with strategic customer behavior. Manage Sci 53(5):726–741

    Article  MATH  Google Scholar 

  • Tsay AA, Agrawal N (2004) Modeling conflict and coordination in multi-channel distribution systems: a review. In: Handbook of quantitative supply chain analysis, pp 557–606

  • Van der Maelen S, Breugelmans E, Cleeren K (2017) The clash of the titans: on retailer and manufacturer vulnerability in conflict delistings. J Mark 81(1):118–135

    Article  Google Scholar 

  • Wang Y, Fan R, Shen L, Jin M (2020) Decisions and coordination of green e-commerce supply chain considering green manufacturer’s fairness concerns. Int J Prod Res 58(24):7471–7489

    Article  Google Scholar 

  • Wang Y, Yu Z, Shen L, Ge Y, Li J (2018) Different dominant models and fairness concern of E-supply chain. Complexity 2018:1–13

    MATH  Google Scholar 

  • Wirtz J, Lovelock C (2016) Services marketing: people, technology, strategy. World Scientific Publishing Company

  • Yan Y, Zhao R, Liu Z (2018) Strategic introduction of the marketplace channel under spillovers from online to offline sales. Eur J Oper Res 267(1):65–77

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang D, Cooper WL (2008) Managing clearance sales in the presence of strategic customers. Prod Oper Manag 17(4):416–431

    Article  Google Scholar 

  • Zhang T, Wang X (2018) The impact of fairness concern on the three-party supply chain coordination. Ind Mark Manage 73:99–115

    Article  Google Scholar 

  • Zhang Y, Lin WH, Huang M, Hu X (2021) Multi-warehouse package consolidation for split orders in online retailing. Eur J Oper Res 289(3):1040–1055

    Article  MathSciNet  MATH  Google Scholar 

  • Zhen X, Shi D, Tsai SB, Wang W (2019) Pricing decisions of a supply chain with multichannel retailer under fairness concerns. Math Problem Eng 2019:9547302

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (71872036, 71832001), the Chinese Ministry of Education Project of Humanities and Social Sciences (18YJA630153), and the Fundamental Research Funds for the Central Universities (2232018H-07) are gratefully acknowledged.

Funding

The National Natural Science Foundation of China (71872036, 71832001), the Chinese Ministry of Education Project of Humanities and Social Sciences (18YJA630153), and the Fundamental Research Funds for the Central Universities (2232018H-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianheng Zhou.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

The manufacturer’s profit function can be written as: \(\pi_{m} = p_{m} \left( {\alpha \left( {\frac{{p_{r} - p_{m} }}{1 - \rho } - \frac{{p_{m} }}{\rho }} \right) + 1 - \alpha } \right) + w\alpha \left( {1 - \frac{{p_{r} - p_{m} }}{1 - \rho }} \right)\), which is derived from two segments: the first is from the marketplace channel, in which she directly sells to consumers; and the second is from the reseller channel, in which she sells products at the wholesale price. Then the reseller’s profit function can be written as: \(\pi_{r} = \left( {p_{r} - w} \right)\alpha \left( {1 - \frac{{p_{r} - p_{m} }}{1 - \rho }} \right);\) according to the game timing and solving the above optimization problem, we obtain the manufacturer’s optimal wholesale price and direct channel price, and the reseller’s optimal price.

This completes the proof of Proposition 1.

Proof of Proposition 2

As the reseller’s price decision can be written as \(p_{r}^{C} = \left\{ {\begin{array}{*{20}l} {p_{r1}^{C*} } \hfill & {{\text{if}}\quad w^{C} > w_{1} } \hfill \\ {\left( {1 + \gamma } \right)w^{C} } \hfill & {{\text{if}}\quad w_{2} \le w^{C} \le w_{1} } \hfill \\ {p_{r2}^{C*} } \hfill & {{\text{if}}\quad w^{C} \le w_{2} } \hfill \\ \end{array} } \right.\) as in Eq. (12), If the manufacturer chooses a wholesale price from range \(w^{C} > w_{1}\), then the manufacturer’s optimization problem is given by

$$ \mathop {{\text{max}}}\limits_{{w^{C} }} p_{m}^{C} \left( {\alpha \left( {\frac{{p_{r}^{C} - p_{m}^{C} }}{1 - \rho } - \frac{{p_{m}^{C} }}{\rho }} \right) + 1 - \alpha } \right) + w^{C} \alpha \left( {1 - \frac{{p_{r}^{C} - p_{m}^{C} }}{1 - \rho }} \right) $$
$$ s.t.\left\{ {\begin{array}{*{20}l} {p_{m}^{C} = \frac{{\rho \left( {1 - \rho + \alpha \left( { - 1 + p_{r}^{C} + w^{C} + \rho } \right)} \right)}}{2\alpha }} \hfill \\ {p_{r}^{C} = p_{r1}^{C*} } \hfill \\ {w^{C} > w_{1} } \hfill \\ \end{array} } \right. $$

By solving the first-order conditions, we can get

$${w}_{1}^{C*}=-\frac{(1+\beta )(-1+\rho )(\alpha (-2+\rho )(2(4-5\rho +{\rho }^{2})+\beta (8-2(5+\gamma )\rho +(2+\gamma ){\rho }^{2}))-\rho (2(8-5\rho +{\rho }^{2})+\beta (\gamma (8-6\rho +{\rho }^{2})+2(8-5\rho +{\rho }^{2}))))}{\alpha (4(-8+13\rho -6{\rho }^{2}+{\rho }^{3})+4\beta (-1+\rho )(\gamma (8-6\rho +{\rho }^{2})+2(8-5\rho +{\rho }^{2}))+{\beta }^{2}({\gamma }^{2}{(-2+\rho )}^{2}\rho +4\gamma (-8+14\rho -7{\rho }^{2}+{\rho }^{3})+4(-8+13\rho -6{\rho }^{2}+{\rho }^{3})))}$$
$${\alpha }_{1}=\frac{\gamma \rho ({\beta }^{2}(4-2\gamma (-2+\rho ))+2(8-5\rho +{\rho }^{2})+\beta (\gamma (8-6\rho +{\rho }^{2})+2(10-5\rho +{\rho }^{2})))}{4{\beta }^{2}(-2+\gamma (-2+\rho ))(-1+\rho )+\beta (-16(-1+\rho )+2\gamma {(-2+\rho )}^{2}(-1+\rho )+{\gamma }^{2}{(-2+\rho )}^{2}\rho )+2(-1+\rho )(-4+\gamma (8-6\rho +{\rho }^{2}))}$$

The optimal wholesale price is given as: \(w^{C} = \left\{ {\begin{array}{*{20}c} {w_{1}^{C*} } & {{\upalpha } \le \alpha_{1} } \\ {w_{1} } & {otherwise} \\ \end{array} } \right.\).

If the manufacturer chooses a wholesale price from range \(w_{2} \le w^{C} \le w_{1}\), then the manufacturer’s optimization problem is given by

$$ \mathop {\text{max }}\limits_{{w^{C} }} p_{m}^{C} \left( {\alpha \left( {\frac{{p_{r}^{C} - p_{m}^{C} }}{1 - \rho } - \frac{{p_{m}^{C} }}{\rho }} \right) + 1 - \alpha } \right) + w^{C} \alpha \left( {1 - \frac{{p_{r}^{C} - p_{m}^{C} }}{1 - \rho }} \right) $$
$$ s.t.\left\{ {\begin{array}{*{20}l} {p_{m}^{C} = \frac{{\rho \left( {1 - \rho + \alpha \left( { - 1 + p_{r}^{C} + w^{C} + \rho } \right)} \right)}}{2\alpha }} \hfill \\ {p_{r}^{C} = \left( {1 + \gamma } \right)w^{C} } \hfill \\ {w_{2} \le w^{C} \le w_{1} } \hfill \\ \end{array} } \right. $$

By solving the first-order conditions, we can get\(w_{2}^{C*} = - \frac{{\left( { - 1 + \rho } \right)\left( { - \left( {2 + \gamma } \right)\rho + \alpha \left( { - 2 + \left( {2 + \gamma } \right)\rho } \right)} \right)}}{{\alpha \left( {4\left( { - 1 + \rho } \right) + 4\gamma \left( { - 1 + \rho } \right) + \gamma^{2} \rho } \right)}}\); \(\alpha_{2} = \frac{{\gamma \left( { - 2\beta \left( {1 + \gamma } \right) + \gamma \left( { - 4 + \rho } \right) + 2\left( { - 3 + \rho } \right)} \right)\rho }}{{ - 4 + 4\beta \left( {1 + \gamma } \right)\left( { - 1 + \rho } \right) - 2\left( { - 2 + \gamma + \gamma^{2} } \right)\rho + \gamma \left( {2 + \gamma } \right)\rho^{2} }}\); \(\alpha_{3} = \frac{{\gamma \left( {\gamma \left( { - 4 + \rho } \right) + 2\left( { - 3 + \rho } \right)} \right)\rho }}{{ - 4 - 2\left( { - 2 + \gamma + \gamma^{2} } \right)\rho + \gamma \left( {2 + \gamma } \right)\rho^{2} }}\).

The optimal wholesale price is given as: \(w^{C} = \left\{ {\begin{array}{*{20}c} {w_{1} } & {{\upalpha } \le \alpha_{2} } \\ {w_{2}^{C*} } & {\alpha_{2} \le {\upalpha } \le \alpha_{3} } \\ {w_{2} } & {{\upalpha } > \alpha_{3} } \\ \end{array} } \right.\).

If the manufacturer chooses a wholesale price from range \(w^{C} \le w_{2}\), then the manufacturer’s optimization problem is given by

$$ \mathop {\text{max }}\limits_{{w^{C} }} p_{m}^{C} \left( {\alpha \left( {\frac{{p_{r}^{C} - p_{m}^{C} }}{1 - \rho } - \frac{{p_{m}^{C} }}{\rho }} \right) + 1 - \alpha } \right) + w^{C} \alpha \left( {1 - \frac{{p_{r}^{C} - p_{m}^{C} }}{1 - \rho }} \right) $$
$$ s.t.\left\{ {\begin{array}{*{20}l} {p_{m}^{C} = \frac{{\rho \left( {1 - \rho + \alpha \left( { - 1 + p_{r} + w^{C} + \rho } \right)} \right)}}{2\alpha }} \hfill \\ {p_{r} = p_{r2}^{C*} } \hfill \\ {w^{C} \le w_{2} } \hfill \\ \end{array} } \right. $$

By solving the first-order conditions, we can get \(w_{3}^{C*} = \frac{{\rho \left( {8 - 5\rho + \rho^{2} } \right) - \alpha \left( { - 8 + 14\rho - 7\rho^{2} + \rho^{3} } \right)}}{{2\alpha \left( {8 - 5\rho + \rho^{2} } \right)}}\); \(\alpha_{4} = \frac{{\gamma \rho \left( {8 - 5\rho + \rho^{2} } \right)}}{{\left( { - 1 + \rho } \right)\left( { - 4 + \gamma \left( {8 - 6\rho + \rho^{2} } \right)} \right)}}\).

The optimal wholesale price is given as: \(w^{C} = \left\{ {\begin{array}{*{20}l} {w_{2} } \hfill & {{\upalpha } \le \alpha_{4} } \hfill \\ {w_{3}^{C*} } \hfill & {{\text{otherwise}}} \hfill \\ \end{array} } \right.\).

Therefore, the manufacturer will compare the resulting payoffs to determine the globally optimal payoff. The globally optimal wholesale price and profits are given as Proposition2.

This completes the proof of Proposition 2.

Proof of Proposition 3

In this case, the manufacturer’s optimization problem is given by

$$ \begin{gathered} \mathop {{\text{max}}}\limits_{{p_{m}^{CC} }} p_{m}^{CC} \left( {\alpha \left( {\frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho } - \frac{{p_{m}^{CC} }}{\rho }} \right) + 1 - \alpha } \right) + w\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right) - \mu \hfill \\ {\text{max}}\left\{ {\varepsilon \left( {p_{r}^{CC} - w} \right)\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right) - w\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right),0} \right\} \hfill \\ \end{gathered} $$

And the reseller’s optimization problem is given by

$$ \begin{gathered} \mathop {\max }\limits_{{p_{r} }} \left( {p_{r}^{CC} - w} \right)\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right) - \beta \hfill \\ \max \left\{ {\gamma w\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right) - \left( {p_{r}^{CC} - w} \right)\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right),0} \right\} \hfill \\ \end{gathered} $$

According to the game timing, the manufacturer should decide the direct channel price first:

  1. 1.

    When \(p_{r}^{C} > \left( {1 + \frac{1}{\varepsilon }} \right)w\), manufacturer’s problem can be denoted as:

    $$ \begin{gathered} \mathop {{\text{max}}}\limits_{{p_{m}^{CC} }} p_{m}^{CC} \left( {\alpha \left( {\frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho } - \frac{{p_{m}^{CC} }}{\rho }} \right) + 1 - \alpha } \right) + w\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right) \hfill \\ - \mu \left[ {\varepsilon \left( {p_{r}^{CC} - w} \right)\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right) - w\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right)} \right], \hfill \\ \end{gathered} $$

    By solving the first-order conditions, we can get \(p_{m1}^{CC} = \frac{{\rho \left( {1 - \rho + \alpha \left( { - 1 + p_{r}^{CC} + w + w\mu - p_{r}^{CC} \varepsilon \mu + w\varepsilon \mu + \rho } \right)} \right)}}{2\alpha }\).

  2. 2.

    When \(p_{r}^{CC} \le \left( {1 + \frac{1}{\varepsilon }} \right)w\), manufacturer’s problem can be denoted as:

    $$ \mathop {{\text{max}}}\limits_{{p_{m}^{CC} }} p_{m}^{CC} \left( {\alpha \left( {\frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho } - \frac{{p_{m}^{CC} }}{\rho }} \right) + 1 - \alpha } \right) + w\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right), $$

By solving the first-order conditions, we can get \(p_{m2}^{CC} = \frac{{\rho \left( {1 - \rho + \alpha \left( { - 1 + p_{r}^{C} + w + \rho } \right)} \right)}}{2\alpha }\).

Take \(p_{m1}^{CC}\) and \(p_{m2}^{CC}\) into the reseller’s profit function respectively:

When \(p_{r}^{CC} \le \left( {1 + \gamma } \right)w\), the reseller’s profit function can be written as:

$$ \pi_{r1}^{CC} = \left( {p_{r}^{CC} - w} \right)\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right) - \beta \left[ {\gamma w\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right) - \left( {p_{r}^{CC} - w} \right)\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right)} \right]; $$

When \(p_{r}^{CC} \ge \left( {1 + \gamma } \right)w\), the reseller’s profit function can be written as:\(\pi_{r2}^{CC} = \left( {p_{r}^{CC} - w} \right)\alpha \left( {1 - \frac{{p_{r}^{CC} - p_{m}^{CC} }}{1 - \rho }} \right)\)

Combine the two cases, we can get:

(1) when \(\gamma \varepsilon > 1\left( {1 + \frac{1}{\varepsilon }} \right)w \le \left( {1 + \gamma } \right)w\) (acrimonious channel),

(1.1) when \(p_{r}^{CC} > \left( {1 + \gamma } \right)w\), take \(p_{m1}^{CC}\) into \(\pi_{r2}^{CC}\), we can get:

$$ \pi_{r2}^{CC} = \mathop {\max }\limits_{{p_{r} }} \frac{{\left( {p_{r}^{CC} - w} \right)\left( {\left( { - 1 + \rho } \right)\rho - \alpha \left( {2 + \left( { - 3 + w + w\mu + w\varepsilon \mu } \right)\rho + \rho^{2} + p_{r}^{CC} \left( { - 2 + \rho - \varepsilon \mu \rho } \right)} \right)} \right)}}{{2\left( { - 1 + \rho } \right)}} $$
$$ s.t.\quad p_{r}^{CC} > \left( {1 + \gamma } \right)w $$

By solving the first-order conditions, we can get \(p_{r11}^{CC*} = \frac{{ - \left( { - 1 + \rho } \right)\rho + \alpha \left( {2 - 3\rho + \rho^{2} + w\left( {2 + \mu \rho + 2\varepsilon \mu \rho } \right)} \right)}}{{2\alpha \left( {2 + \left( { - 1 + \varepsilon \mu } \right)\rho } \right)}}\), then the price in reseller channel can be denoted as: \(p_{r}^{CC} = \left\{ {\begin{array}{*{20}c} {\left( {1 + \gamma } \right)w} & {w > w_{A} } \\ {p_{r11}^{CC*} } & {w \le w_{A} } \\ \end{array} } \right.,\) where \(w_{A} = \frac{{\left( {\alpha \left( { - 2 + \rho } \right) - \rho } \right)\left( { - 1 + \rho } \right)}}{{\alpha \left( {2 - \left( {2 + \mu } \right)\rho + 2\gamma \left( {2 + \left( { - 1 + \varepsilon \mu } \right)\rho } \right)} \right)}}.\)

(1.2) when \(\left( {1 + \frac{1}{\varepsilon }} \right)w < p_{r}^{CC} \le \left( {1 + \gamma } \right)w,\) take \(p_{m1}^{CC}\) into \(\pi_{r1}^{CC}\), we can get:

$$ \pi_{r1}^{CC} = \mathop {\max }\limits_{{p_{r} }} \frac{{\left( {p_{r}^{CC} \left( {1 + \beta } \right) - w\left( {1 + \beta + \beta \gamma } \right)} \right)\left( {\left( { - 1 + \rho } \right)\rho - \alpha \left( {2 + \left( { - 3 + w + w\mu + w\varepsilon \mu } \right)\rho + \rho^{2} + p_{r}^{CC} \left( { - 2 + \rho - \varepsilon \mu \rho } \right)} \right)} \right)}}{{2\left( { - 1 + \rho } \right)}} $$
$$ s.t.\left( {1 + \frac{1}{\varepsilon }} \right)w < p_{r}^{CC} \le \left( {1 + \gamma } \right)w $$

By solving the first-order conditions, we can get

$$ p_{r12}^{CC*} = \frac{{ - \left( {1 + \beta } \right)\left( { - 1 + \rho } \right)\rho + \alpha \left( {\left( {1 + \beta } \right)\left( {2 - 3\rho + \rho^{2} } \right) + w\left( {2 + \mu \rho + 2\varepsilon \mu \rho + \beta \left( {2 + \mu \rho + 2\varepsilon \mu \rho + \gamma \left( {2 - \rho + \varepsilon \mu \rho } \right)} \right)} \right)} \right)}}{{2\alpha \left( {1 + \beta } \right)\left( {2 + \left( { - 1 + \varepsilon \mu } \right)\rho } \right)}}, $$

then the price in reseller channel can be denoted as: \(p_{r}^{CC} = \left\{ {\begin{array}{*{20}l} {\left( {1 + \gamma } \right)w} \hfill & {w \le w_{B1} } \hfill \\ {p_{r12}^{CC*} } \hfill & {w_{B1} < w \le w_{B2} } \hfill \\ {\left( {1 + \frac{1}{\varepsilon }} \right)w} \hfill & {w > w_{B2} } \hfill \\ \end{array} } \right.,\) where \(w_{B1} = \frac{{\left( {1 + \beta } \right)\left( {\alpha \left( { - 2 + \rho } \right) - \rho } \right)\left( { - 1 + \rho } \right)}}{{\alpha \left( {2 - 2\rho - \mu \rho + 2\gamma \left( {2 + \left( { - 1 + \varepsilon \mu } \right)\rho } \right) + \beta \left( {2 - \left( {2 + \mu } \right)\rho + \gamma \left( {2 + \left( { - 1 + \varepsilon \mu } \right)\rho } \right)} \right)} \right)}};\) \(w_{B2} = - \frac{{\left( {1 + \beta } \right)\varepsilon \left( {\alpha \left( { - 2 + \rho } \right) - \rho } \right)\left( { - 1 + \rho } \right)}}{{\alpha \left( {2\left( { - 2 + \rho } \right) - \varepsilon \left( {2 + \left( { - 2 + \mu } \right)\rho } \right) + \beta \left( {2\left( { - 2 + \rho } \right) + \gamma \varepsilon^{2} \mu \rho - \varepsilon \left( {2 + \gamma \left( { - 2 + \rho } \right) + \left( { - 2 + \mu } \right)\rho } \right)} \right)} \right)}},\) what’s more \({w}_{B1}\le {w}_{B2}\) always holds.

(1.3) when \(p_{r}^{CC} \le \left( {1 + \frac{1}{\varepsilon }} \right)w\), take \(p_{m2}^{CC}\) into \(\pi_{r1}^{CC}\), we can get:

$$ \pi_{r1}^{CC} = - \frac{{\left( {p_{r}^{CC} \left( {1 + \beta } \right) - w\left( {1 + \beta + \beta \gamma } \right)} \right)\left( { - \left( { - 1 + \rho } \right)\rho + \alpha \left( {2 + p_{r}^{CC} \left( { - 2 + \rho } \right) + \left( { - 3 + w} \right)\rho + \rho^{2} } \right)} \right)}}{{2\left( { - 1 + \rho } \right)}} $$
$$ s.t.\quad p_{r}^{CC} \le \left( {1 + \frac{1}{\varepsilon }} \right)w $$

By solving the first-order conditions, we can get \(p_{r13}^{CC*} = \frac{{\left( {1 + \beta } \right)\left( { - 1 + \rho } \right)\rho + \alpha \left( {w\left( { - 2 + \beta \left( { - 2 + \gamma \left( { - 2 + \rho } \right)} \right)} \right) - \left( {1 + \beta } \right)\left( {2 - 3\rho + \rho^{2} } \right)} \right)}}{{2\alpha \left( {1 + \beta } \right)\left( { - 2 + \rho } \right)}}\), then the price in reseller channel can be denoted as: \(p_{r}^{CC} = \left\{ {\begin{array}{*{20}c} {p_{r13}^{CC*} } & {w > w_{C} } \\ {\left( {1 + \frac{1}{\varepsilon }} \right)w} & {w \le w_{C} } \\ \end{array} } \right.\), where \(w_{C} = \frac{{\left( {1 + \beta } \right)\varepsilon \left( {\alpha \left( { - 2 + \rho } \right) - \rho } \right)\left( { - 1 + \rho } \right)}}{{\alpha \left( {\beta \left( {4 + \varepsilon \left( {2 + \gamma \left( { - 2 + \rho } \right) - 2\rho } \right) - 2\rho } \right) - 2\left( { - 2 + \varepsilon \left( { - 1 + \rho } \right) + \rho } \right)} \right)}}.\)

\(w_{A} \le w_{B1} \le w_{B2} \le w_{C}\) always holds, then we can combine (1.1) to (1.3) as:

When \(\gamma \varepsilon > 1\left( {1 + \frac{1}{\varepsilon }} \right)w \le \left( {1 + \gamma } \right)w,\) \(p_{r}^{CC} = \left\{ {\begin{array}{*{20}c} {p_{r11}^{CC*} } & {w \le w_{A} } \\ {\left( {1 + \gamma } \right)w} & {w_{A} < w \le w_{B1} } \\ {\begin{array}{*{20}c} {p_{r12}^{CC*} } \\ {\left( {1 + \frac{1}{\varepsilon }} \right)w} \\ {p_{r13}^{CC*} } \\ \end{array} } & {\begin{array}{*{20}c} {w_{B1} < w \le w_{B2} } \\ {w_{B2} < w \le w_{C} } \\ {otherwise} \\ \end{array} } \\ \end{array} } \right.\)

Then as the proof of proposition 2, we can get \(w^{*} = \left\{ {\begin{array}{*{20}c} {w_{5}^{*} } & {\alpha \le \alpha_{7} } \\ {w_{B2} } & {\alpha_{7} \le \alpha \le \alpha_{4} } \\ {\begin{array}{*{20}c} {w_{3}^{*} } \\ {w_{A} } \\ \end{array} } & {\begin{array}{*{20}c} {\alpha_{4} \le \alpha \le \alpha_{3} } \\ {otherwise} \\ \end{array} } \\ \end{array} } \right.\), where \(w_{3}^{*} = \frac{{\rho \left( {8 - 5\rho + \rho^{2} } \right) - \alpha \left( { - 8 + 14\rho - 7\rho^{2} + \rho^{3} } \right)}}{{2\alpha \left( {8 - 5\rho + \rho^{2} } \right)}}\);

\(w_{5}^{*} \!=\! - \frac{{\left( {1 + \beta } \right)\left( { - 1 + \rho } \right)\left( {\alpha \left( { - 2 + \rho } \right)\left( {2\left( {4 - 5\rho + \rho^{2} } \right) + \beta \left( {8 - 2\left( {5 + \gamma } \right)\rho + \left( {2 + \gamma } \right)\rho^{2} } \right)} \right) - \rho \left( {2\left( {8 - 5\rho + \rho^{2} } \right) + \beta \left( {\gamma \left( {8 - 6\rho + \rho^{2} } \right) + 2\left( {8 - 5\rho + \rho^{2} } \right)} \right)} \right)} \right)}}{{\alpha \left( {4\left( { - 8 + 13\rho - 6\rho^{2} + \rho^{3} } \right) + 4\beta \left( { - 1 + \rho } \right)\left( {\gamma \left( {8 - 6\rho + \rho^{2} } \right) + 2\left( {8 - 5\rho + \rho^{2} } \right)} \right) + \beta^{2} \left( {\gamma^{2} \left( { - 2 + \rho } \right)^{2} \rho + 4\gamma \left( { - 8 + 14\rho - 7\rho^{2} + \rho^{3} } \right) + 4\left( { - 8 + 13\rho - 6\rho^{2} + \rho^{3} } \right)} \right)} \right)}}\); \(\alpha_{3} = \frac{{\gamma \rho \left( {8 - 5\rho + \rho^{2} } \right)}}{{\left( { - 1 + \rho } \right)\left( { - 4 + \gamma \left( {8 - 6\rho + \rho^{2} } \right)} \right)}}\); \(\alpha_{4} = \frac{{\rho \left( {8 - 5\rho + \rho^{2} } \right)}}{{\left( { - 1 + \rho } \right)\left( {8 - 4\varepsilon - 6\rho + \rho^{2} } \right)}}\);\(\alpha_{7} = \frac{{\gamma \rho \left( {\beta^{2} \left( {4 - 2\gamma \left( { - 2 + \rho } \right)} \right) + 2\left( {8 - 5\rho + \rho^{2} } \right) + \beta \left( {\gamma \left( {8 - 6\rho + \rho^{2} } \right) + 2\left( {10 - 5\rho + \rho^{2} } \right)} \right)} \right)}}{{4\beta^{2} \left( { - 2 + \gamma \left( { - 2 + \rho } \right)} \right)\left( { - 1 + \rho } \right) + \beta \left( { - 16\left( { - 1 + \rho } \right) + 2\gamma \left( { - 2 + \rho } \right)^{2} \left( { - 1 + \rho } \right) + \gamma^{2} \left( { - 2 + \rho } \right)^{2} \rho } \right) + 2\left( { - 1 + \rho } \right)\left( { - 4 + \gamma \left( {8 - 6\rho + \rho^{2} } \right)} \right)}}\).

(2) when \(\gamma \varepsilon \le 1\left( {1 + \frac{1}{\varepsilon }} \right)w > \left( {1 + \gamma } \right)w\) (acrimonious channel), the proof is as the situation where \(\gamma \varepsilon > 1\).

This completes the proof of Proposition 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, J. Modeling the relationship between fairness concern and customer loyalty in dual distribution channel. J Comb Optim 45, 48 (2023). https://doi.org/10.1007/s10878-022-00943-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10878-022-00943-1

Keywords

  • Fairness concern
  • Dual-channel
  • Loyalty
  • e-commerce