Skip to main content

A value for cooperative games with coalition and probabilistic graph structures


In this paper we generalize TU-games with coalition and graph structures to TU-games with coalition and probabilistic graph structures. We introduce the probabilistic graph-partition value and we show that the value is uniquely determined by the axioms of probabilistic graph efficiency, probabilistic balanced contributions and probabilistic collective balanced contributions and the axioms of probabilistic graph efficiency, probabilistic balanced contributions, probabilistic balanced per capita contributions and either probabilistic fairness for joining the grand coalition or probabilistic population solidarity within unions, respectively. Also, we apply this value to China’s railway network and compare it with other values.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Alonso-Meijide JM, Fiestras-Janeiro MG (2006) The Banzhaf value and communication situations. Naval Res Logist 53(3):198–203

    MathSciNet  Article  Google Scholar 

  2. Alonso-Meijide JM, Álvarez-Mozos M, Fiestras-Janeiro MG (2009) Values of games with graph restricted communication and a priori unions. Math Soc Sci 58(2):202–213

    MathSciNet  Article  Google Scholar 

  3. Aumann RJ, Dréze J (1974) Cooperative games with coalition structures. Int J Game Theory 3:217–237

    MathSciNet  Article  Google Scholar 

  4. Borm P, Owen G, Tijs S (1992) On the position value for communication situations. SIAM J Discrete Math 5:305–320

    MathSciNet  Article  Google Scholar 

  5. Calvo E, Gutiérrez E (2010) Solidarity in games with a coalition structure. Math Soc Sci 60(3):196–203

    MathSciNet  Article  Google Scholar 

  6. Calvo E, Lasaga J, van den Nouweland A (1999) Values of games with probabilistic graphs. Math Soc Sc 37:79–95

    MathSciNet  Article  Google Scholar 

  7. Ghintran A, González-Arangüena E, Manuel C (2012) A probabilistic position value. Annals Oper Res 1:183–196

    MathSciNet  Article  Google Scholar 

  8. Gómez D, González-Arangüena E, Manuel C, Owen G (2008) A value for generalized probabilistic communication situations. Eur J Oper Res 190:539–556

    MathSciNet  Article  Google Scholar 

  9. Gómez-Rúa M, Vidal-Puga J (2011) Balanced per capita contributions and level structure of cooperation. Top 19:167–176

    MathSciNet  Article  Google Scholar 

  10. Hu X (2020) The weighted shapley-egalitarian value for cooperative games with a coalition structure. Top 28:193–212

    MathSciNet  Article  Google Scholar 

  11. Hu X, Xu G, Li D (2019) The egalitarian efficient extension of the Aumann-Dréze value. J Optim Theory Appl 181:1033–1052

    MathSciNet  Article  Google Scholar 

  12. Kamijo Y (2013) The collective value: a new solution for games with coalition structures. Top 21:572–589

    MathSciNet  Article  Google Scholar 

  13. Myerson RB (1977) Graphs and cooperation in games. Math Oper Res 2(3):225–229

    MathSciNet  Article  Google Scholar 

  14. Owen G (1977) Values of games with a priori unions. In: Henn R, Moeschlin O (eds) Mathematical economics and game theory. Springer, Cham, pp 76–88

    Chapter  Google Scholar 

  15. Shan E, Shi J, Cai L (2021) The allocation rule for TU-games with coalition and probabilistic graph structures and its applications. Chinese J Manag Sci.

    Article  Google Scholar 

  16. Shapley LS (1953) A value for \(n\)-person games. In: Kuhn H, Tucker A (eds) Contributions to the theory of games II. Princeton University Press, Princeton, pp 307–317

    Google Scholar 

  17. Shi J, Shan E (2020) The Banzhaf value for generalized probabilistic communication situations. Annals Oper Res 301:225–244

    MathSciNet  Article  Google Scholar 

  18. van den Brink R, van der Laan G, Moes N (2015) Values for transferable utility games with coalition and graph structure. Top 23(1):77–99

    MathSciNet  Article  Google Scholar 

  19. Vázquez-Brage M, García-Jurado I, Carreras F (1996) The Owen value applied to games with graph-restricted communication. Games Econ Behav 12(1):42–53

    MathSciNet  Article  Google Scholar 

Download references


We are grateful to the reviewers for carefully reading and the invaluable comments and suggestions, which improves the presentation greatly.


The research was supported in part by the National Nature Science Foundation of China (No. 11971298).

Author information



Corresponding author

Correspondence to Erfang Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Cai, L., Shan, E. et al. A value for cooperative games with coalition and probabilistic graph structures. J Comb Optim (2021).

Download citation


  • TU-game
  • Probabilistic graph
  • Coalition structure
  • Graph-partition value

AMS Subject Classification

  • 91A12
  • 91A43
  • 05C57

JEL Classifcation

  • C71
  • D60