Andres E (1994) Discrete circles, rings and spheres. Comput Graphics 18(5):695–706
Article
Google Scholar
Andres E (2003) Discrete linear objects in dimension n: the standard model. Graph Models 65(1):92–111
Article
Google Scholar
Anton F, Emiris I, Mourrain B, Teillaud M (2005) The offset to an algebraic curve and an application to conics. In: ICCSA, lecture notes in computer science, vol 3480, pp 1–21. Springer
Arcelli C, Sanniti di Baja G (1996) Skeletons of planar patterns. In: Kong TY, Rosenfeld A (eds) Topological algorithms for digital image processing, machine intelligence and pattern recognition, vol 19. Elsevier, Amsterdam, pp 99–143
Chapter
Google Scholar
Arrondo E, Sendra J, Sendra J (1999) Genus formula for generalized offset curves. J Pure Appl Algebra 136(3):199–209
MathSciNet
Article
Google Scholar
Beer G (1993) Topologies on Closed and Closed Convex Sets, Mathematics and its Applications, vol 268. Kluwer, Dordrecht
Book
Google Scholar
Borgefors G, Ramella G, Sanniti di Baja G (2001) Shape and topology preserving multi-valued image pyramids for multi-resolution skeletonization. Pattern Recognit Lett 22(6):741–751
Article
Google Scholar
Brimkov B, Brimkov VE (2020) On connectedness of discretized sets. In: Lukić T et al (eds) Combinatorial Image Analysis, , Lecture Notes in Computer Science, vol 1248. Springer Nature, pp 18–26
Brimkov VE (2010) Connectedness of offset digitizations in higher dimensions. In: Barneva RP, Brimkov VE, Hauptman HA, Natal Jorge RM, Tavares JMRS (eds) Computational modeling of objects represented in images. Springer, Berlin, pp 36–46
Chapter
Google Scholar
Brimkov VE, Barneva RP, Brimkov B (2011) Connected distance-based rasterization of objects in arbitrary dimension. Graph Models 73(6):323–334
Article
Google Scholar
Campo TM (2016) Medical imaging for the health care provider: practical radiograph interpretation. Springer, New York
Book
Google Scholar
Cohen-Or D, Kaufman A (1997) 3D line voxelization and connectivity control. IEEE Comput Graphics Appl 17(6):80–87
Article
Google Scholar
Cox D, Little J, O’shea D (1998) Using algebraic geometry, graduate texts in mathematics, vol 185. Springer, New York
Book
Google Scholar
Debled-Rennesson I, Domenjoud E, Jamet D (2006) Arithmetic discrete parabolas. In: Bebis G, Boyle R, Parvin B, Koracin D, Remagnino P, Nefian A, Meenakshisundaram G, Pascucci V, Zara J, Molineros J, Theisel H, Malzbender T (eds) Advances in visual computing. Springer, Berlin, pp 480–489
Chapter
Google Scholar
Engelking R (1989) General topology. Revised and completed edition. Heldermann Verlag, Berlin
Google Scholar
Figueiredo O, Reveillès JP (1996) New results about 3d digital lines. In: Vision Geometry V. vol. 2826, pp. 98–109. International Society for Optics and Photonics
Fiorio C, Jamet D, Toutant JL (2006) Discrete circles: an arithmetical approach with non-constant thickness. In: Vision Geometry XIV. vol. 6066, p. 60660C. International Society for Optics and Photonics
Gonzalez RC, Woods RE, Eddins SL (2020) Digital image processing using MATLAB, 3rd edn. Gatesmark
Hall RW, Kong TY, Rosenfeld A (1996) Shrinking binary images. In: Kong TY, Rosenfeld A (eds) Topological algorithms for digital image processing. Elsevier, Amsterdam, pp 31–98
Chapter
Google Scholar
Hoffman JD, Frankel S (2001) Numerical methods for engineers and scientists. CRC Press, Boca Raton
Google Scholar
Hoffmann C, Vermeer P (1991) Eliminating extraneous solutions for the sparse resultant and the mixed volume. J Symb Geom Appl 1(1):47–66
MATH
Google Scholar
Jonas A, Kiryati N (1997) Digital representation schemes for 3d curves. Pattern Recognit 30(11):1803–1816
Article
Google Scholar
Kardos P, Palágyi K (2017) On topology preservation of mixed operators in triangular, square, and hexagonal grids. Discrete Appl Math 216:441–448
MathSciNet
Article
Google Scholar
Kaufman A, Cohen D, Yagel R (1993) Volume graphics. Computer 26(7):51–64
Kim CE (1983) Three-dimensional digital line segments. IEEE Trans Pattern Anal Mach Intell 2:231–234
Article
Google Scholar
Klette R, Rosenfeld A (2004) Digital geometry: geometric methods for digital picture analysis. Elsevier, Amsterdam
MATH
Google Scholar
Kong T (2001) Digital topology. In: Davis LS (ed) Foundations of image understanding. Kluwer, Boston, pp 33–71
Google Scholar
Krätzel E (1981) Zahlentheorie, vol 19. VEB Deutscher Verlag der Wissenschaften, Berlin
MATH
Google Scholar
Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7(1):48–50
MathSciNet
Article
Google Scholar
Marschner S (2018) Fundamentals of computer graphics, 4th edn. CRC Press, Boca Raton
Book
Google Scholar
McAllister M, Kirkpatrick D, Snoeyink J (1996) A compact piecewise-linear Voronoi diagram for convex sites in the plane. Discrete Comput Geom 15(1):73–105
MathSciNet
Article
Google Scholar
Megiddo N (1983) Linear-time algorithms for linear programming in \(\text{ R}^{3}\) and related problems. SIAM J Comput 12(4):759–776
MathSciNet
Article
Google Scholar
Megiddo N (1984) Linear programming in linear time when the dimension is fixed. J ACM 31(1):114–127
MathSciNet
Article
Google Scholar
Munkers JR (2000) Topology, 2nd edn. Prentice Hall, London
Google Scholar
Németh G, Kardos P, Palágyi K (2011) 2D parallel thinning and shrinking based on sufficient conditions for topology preservation. Acta Cybern 20(1):125–144
Article
Google Scholar
Németh G, Palágyi K (2011) Topology preserving parallel thinning algorithms. Int J Imaging Syst Technol 21(1):37–44
Article
Google Scholar
Preparata FP, Shamos MI (2012) Computational geometry: an introduction. Springer, Berlin
MATH
Google Scholar
Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36(6):1389–1401
Article
Google Scholar
Ronse C (1986) A Topological characterization of thinning. Theoret Comput Sci 43:31–41
MathSciNet
Article
Google Scholar
Ronse C, Tajine M (2001) Hausdorff discretization for cellular distances and Its relation to cover and supercover discretizations. J Vis Comput Image Represent 12(2):169–200
Article
Google Scholar
Rosenfeld A (1970) Connectivity in digital pictures. J ACM 17(1):146–160
MathSciNet
Article
Google Scholar
Rosenfeld A (1973) Arcs and curves in digital pictures. J ACM 20(1):81–87
MathSciNet
Article
Google Scholar
Saha PK, Borgefors G, Sanniti di Baja G (2016) A survey on skeletonization algorithms and their applications. Pattern Recognit Lett 76:3–12
Article
Google Scholar
Stelldinger P (2008) Image digitization and its influence on shape properties in finite dimensions, vol 312. IOS Press, Amsterdam
MATH
Google Scholar
Svensson S, Sanniti di Baja G (2003) Simplifying curve skeletons in volume images. Comput Vis Image Underst 90(3):242–257
Article
Google Scholar
Tajine M, Ronse C (2002) Topological properties of hausdorff discretization, and comparison to other discretization schemes. Theoret Comput Sci 283(1):243–268
MathSciNet
Article
Google Scholar