Skip to main content
Log in

Algorithmic and complexity aspects of problems related to total Roman domination for graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

A function \(f:V(G)\rightarrow \{0,1,2\}\) is a Roman dominating function (RDF) if every vertex u for which \(f(u)=0\) is adjacent to at least one vertex v for which \(f(v)=2\). The weight of a Roman dominating function is the value \(f(V(G))=\sum _{u \in V}f(u)\). The Roman domination number of a graph G, denoted by \(\gamma _{R}(G)\), is the minimum weight of a Roman dominating function on G. A connected (respectively, total) Roman dominating function is an RDF f such that the vertices with non-zero labels under f induce a connected graph (respectively, a subgraph with no isolated vertex). The connected (respectively, total) Roman domination number of a graph G, denoted by \(\gamma _{cR}(G)\) (respectively, \(\gamma _{tR}(G)\)) is the minimum weight of a connected (respectively, total) RDF of G. It this paper we first study the complexity issue of the problems posed in [H. Abdollahzadeh Ahangar, M. A. Henning, V. Samodivkin and I. G. Yero, Total Roman domination in graphs, Appl. Anal. Discret. Math. 10 (2016), 501–517], and show that the problem of deciding whether \(\gamma _{tR}(G)=2\gamma (G)\), \(\gamma _{tR}(G)=2\gamma _t(G)\) or \(\gamma _{tR}(G)=3\gamma (G)\) is NP-hard even when restricted to chordal or bipartite graphs. Then, we give a linear algorithm that decides whether \(\gamma _{tR}(G)=2\gamma (G)\), \(\gamma _{tR}(G)=2\gamma _t(G)\) or \(\gamma _{tR}(G)=3\gamma (G)\), if G is a tree or a unicyclic graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdollahzadeh Ahangar H, Henning MA, Samodivkin V, Yero IG (2016) Total Roman domination in graphs. Appl Anal Discrete Math 10:501–517

    Article  MathSciNet  Google Scholar 

  • Abdollahzadeh Ahangar H, Chellali M, Kuziak D, Samodivkin V (2016) On maximal Roman domination in graphs. Int J Comput Math 93(7):1093–1102

    Article  MathSciNet  Google Scholar 

  • Amjadi J, Sheikholeslami SM, Soroudi M (2018) Nordhaus–Gaddum bounds for total Roman domination. J Comb Optim 35:126–133

    Article  MathSciNet  Google Scholar 

  • Amjadi J, Sheikholeslami SM, Soroudi M (2019) On the total Roman domination in trees. Discuss Math Graph Theory 39:519–532

    Article  MathSciNet  Google Scholar 

  • Amjadi J, Nazari-Moghaddam S, Sheikholeslam SM, Volkmann L (2017) Total Roman domination number of trees. Australas J Combin 69(2):271–285

    MathSciNet  MATH  Google Scholar 

  • Campanelli N, Kuziak D (2019) Total Roman domination in the lexicographic product of graphs. Discrete Appl Math 263:88–95

    Article  MathSciNet  Google Scholar 

  • Chellali M, Haynes TW, Hedetniemi ST, MacRae A (2016) Roman \(\{2\}\)-domination. Discrete Appl Math 204:22–28

    Article  MathSciNet  Google Scholar 

  • Cockayane EJ, Dreyer PM Jr, Hedetniemi SM, Hedetniemi ST (2004) On Roman domination in graphs. Discrete Math 278:11–22

    Article  MathSciNet  Google Scholar 

  • Cockayne EJ, Goodman S, Hedetniemi S (1975) A linear algorithm for the domination number of a tree. Inf Process Lett 4(2):41–44

    Article  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-Completeness. W. H. Freeman, New York

    MATH  Google Scholar 

  • Haynes TW, Hedetniemi ST, Slater PJ (1998) Fundamentals of domination in graphs. Marcel Dekker, Inc., New York

    MATH  Google Scholar 

  • Laskar R, Pfaff J, Hedetniemi SM, Hedetniemi ST (1984) On the algorithmic complexity of total domination. SIAM J. Algebr Discrete Methods 5(3):420–425

    Article  MathSciNet  Google Scholar 

  • Li M (2016) On the \(k\)-Roman domination of graphs. J Comput Theory Nanosci 13:2705–2709

    Article  Google Scholar 

  • Liu C-H, Chang GJ (2013) Roman domination on strongly chordal graphs. J Comb Optim 26:608–619

    Article  MathSciNet  Google Scholar 

  • Rahmouni A, Chellali M (2018) Independent Roman \(\{2\}\)-domination in graphs. Discrete Appl Math 236:408–414

    Article  MathSciNet  Google Scholar 

  • Revelle CS, Rosing KE (2000) Defendens imperium romanum: a classical problem in military strategy. Am Math Mon 107:585–594

    Article  MathSciNet  Google Scholar 

  • Stewart I (1999) Defend the roman empire!. Sci Am 281(6):136–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Poureidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poureidi, A., Rad, N.J. Algorithmic and complexity aspects of problems related to total Roman domination for graphs. J Comb Optim 39, 747–763 (2020). https://doi.org/10.1007/s10878-019-00514-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-019-00514-x

Keywords

Navigation