Skip to main content
Log in

Algorithmic results on double Roman domination in graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Given a graph \(G=(V,E)\), a function \(f:V\longrightarrow \{0,1,2,3\}\) is called a double Roman dominating function on G if (i) for every \(v\in V\) with \(f(v)=0\), there are at least two neighbors of v that are assigned 2 under f or at least a neighbor of v that is assigned 3 under f, and (ii) for every vertex v with \(f(v)=1\), there is at least one neighbor w of v with \(f(w)\ge 2\). The weight of a double Roman dominating function f is \(f(V)=\sum _{u\in V}f(u)\). The double Roman domination number of G, denoted by \(\gamma _{dR}(G)\) is the minimum weight of a double Roman dominating function on G. For a graph \(G=(V,E)\), Min-Double-RDF is to find a double Roman dominating function f with \(f(V)=\gamma _{dR}(G)\). The decision version of Min-Double-RDF is shown to be NP-complete for chordal graphs and bipartite graphs. In this paper, we first strengthen the known NP-completeness of the decision version of Min-Double-RDF by showing that the decision version of Min-Double-RDF remains NP-complete for undirected path graphs, chordal bipartite graphs, and circle graphs. We then present linear time algorithms for computing the double Roman domination number in proper interval graphs and block graphs. We then discuss on the approximability of Min-Double-RDF and present a 2-approximation algorithm in 3-regular bipartite graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahangar HA, Chellali M, Sheikholeslami SM (2017) On the double Roman domination in graphs. Discrete Appl Math 232:1–7

    Article  MathSciNet  Google Scholar 

  • Ahangar HA, Chellali M, Sheikholeslami SM (2019) Signed double Roman domination in graphs. Discrete Appl Math 257:1–11

    Article  MathSciNet  Google Scholar 

  • Ahangar HA, Henning MA, Löwenstein C, Zhao Y, Samodivkin V (2014) Signed Roman domination in graphs. J Comb Optim 27:241–255

    Article  MathSciNet  Google Scholar 

  • Aho AV, Hopcroft JE, Ullman JD (1974) The design and analysis of computer algorithms. Addison-Wesley, Boston

    MATH  Google Scholar 

  • Alimonti P, Kann V (1997) Hardness of approximating problems on cubic graphs. In: Proceedings of 3rd Italian conference on algorithms and complexity, Rome, Lect Notes in Comput Sc 1203:288–298

  • Amjadi J, Nazari-Moghaddam S, Sheikholeslami SM, Volkmann L (2018) An upper bound on the double Roman domination number. J Comb Optim 36(1):81–89

    Article  MathSciNet  Google Scholar 

  • Anu V, Lakshmanan SA (2018) Double Roman domination number. Discrete Appl Math 244:198–204

    Article  MathSciNet  Google Scholar 

  • Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M (1999) Complexity and approximation : combinatorial optimization problems and their approximability properties. Springer, Berlin

    Book  Google Scholar 

  • Beeler RA, Haynes TW, Hedetniemi ST (2016) Double Roman domination. Discrete Appl Math 211:23–29

    Article  MathSciNet  Google Scholar 

  • Booth KS, Johnson JH (1974) Dominating sets in chordal graphs. SIAM J Comput 9:205–212

    Google Scholar 

  • Chellali M, Haynes TW, Hedetniemi ST, MacRae A (2016) Roman \(\{2\}\)-domination. Discrete Appl Math 204:22–28

    Article  MathSciNet  Google Scholar 

  • Chvátal V (1979) A greedy heuristic for the set covering problem. Math Oper Res 4:233–235

    Article  MathSciNet  Google Scholar 

  • Cockayne EJ, Dreyer PA, Hedetniemi SM, Hedetniemi ST (2004) Roman domination in graphs. Discrete Math 278:11–22

    Article  MathSciNet  Google Scholar 

  • Dinur I, Steurer D (2014) Analytical approach to parallel repetition. In: Proceedings of symposium on theory of computing, STOC, 2014, pp 624–633

  • Haynes TW, Hedetniemi ST, Slater PJ (eds) (1998a) Domination in graphs: advanced topics. Marcel Dekker Inc, New York

    MATH  Google Scholar 

  • Haynes TW, Hedetniemi ST, Slater PJ (1998b) Fundamentals of domination in graphs. Marcel Dekker Inc, New York

    MATH  Google Scholar 

  • Henning MA, Hedetniemi ST (2003) Defending the Roman empire-a new strategy. Discrete Math 266:239–251

    Article  MathSciNet  Google Scholar 

  • Henning MA, Rad N (2019) A characterization of double Roman trees. Discrete Appl Math 259:100–111

    Article  MathSciNet  Google Scholar 

  • Jamison RE, Laskar RC (1982) Elimination orderings of chordal graphs. Combinatorics and Applications, Calcutta, 1982. ISI, Calcutta, pp 192–200

  • Keil JM (1993) The complexity of domination problems in circle graphs. Discrete Appl Math 42:51–63

    Article  MathSciNet  Google Scholar 

  • Müller H, Brandstädt A (1987) The NP-completeness of STEINER TREE and DOMINATING SET for chordal bipartite graphs. Theoret Comput Sci 53:257–265

    Article  MathSciNet  Google Scholar 

  • Mojdeh DA, Parsian A, Masoumi I (2017) Bounds on double Roman domination number of graphs. In: Proceedings of the 2nd international conference on combinatorics, cryptography and computation (I4C2017)

  • Panda BS, Das SK (2003) A linear time recognition algorithm for proper interval graphs. Inf Process Lett 87:153–161

    Article  MathSciNet  Google Scholar 

  • Rad NJ, Rahbani H (2019) Some progress on double Roman domination in graphs. Discuss Math Graph Theory 39(1):41–53

    Article  MathSciNet  Google Scholar 

  • ReVelle CS, Rosing KE (2000) Defendens imperium romanum: a classical problem in military strategy. Am Math Monthly 107:585–594

    Article  MathSciNet  Google Scholar 

  • Shao Z, Sheikholeslami SM, Nazari-Moghaddam S, Wang S (2019) Global double Roman domination in graphs. J Discrete Math Sci Crytogr 22(1):31–44

    MathSciNet  Google Scholar 

  • Stewart I (1999) Defend the Roman empire!. Sci Am 281:136–139

    Article  Google Scholar 

  • Volkmann L (2018) Double Roman domination and domatic numbers of graphs. Commun Comb Optim 3(1):71–77

    MathSciNet  MATH  Google Scholar 

  • Yen CC, Lee RCT (1996) The weighted perfect domination problem and its variants. Discrete Appl Math 66:147–160

    Article  MathSciNet  Google Scholar 

  • Yue J, Wei M, Li M, Liu G (2018) On the double Roman domination of graphs. Appl Math Comput 338:669–675

    MathSciNet  MATH  Google Scholar 

  • Zhang X, Li Z, Jiang H, Shao Z (2018) Double Roman domination in trees. Inf Process Lett 134:31–34

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her comments that lead to improvements in the paper. The research of the second author is supported in part by the University of Johannesburg. The research of the third author is supported in part by DST-SERB (MATRICS) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pradhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Henning, M.A. & Pradhan, D. Algorithmic results on double Roman domination in graphs. J Comb Optim 39, 90–114 (2020). https://doi.org/10.1007/s10878-019-00457-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-019-00457-3

Keywords

Navigation