Skip to main content
Log in

The spectral radius and domination number in linear uniform hypergraphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

This paper investigates the spectral radius and signless Laplacian spectral radius of linear uniform hypergraphs. A dominating set in a hypergraph H is a subset D of vertices if for every vertex v not in D there exists \(u\in D\) such that u and v are contained in a hyperedge of H. The minimum cardinality of a dominating set of H is called the domination number of H. We present lower bounds on the spectral radius and signless Laplacian spectral radius of a linear uniform hypergraph in terms of its domination number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya BD (2007) Domination in hypergraphs. AKCE J Comb 4:117–126

    MathSciNet  MATH  Google Scholar 

  • Aouchiche M, Hansen P, Stevanović D (2010) A sharp upper bound on algebraic connectivity using domination number. Linear Algebra Appl 432:2879–2893

    Article  MathSciNet  Google Scholar 

  • Brand C, Seifter N (1996) Eigenvalues and domination in graphs. Math Slov 46:33–39

    MathSciNet  MATH  Google Scholar 

  • Bujtás C, Henning MA, Tuza Z (2012) Transversals and domination in uniform hypergraphs. Eur J Comb 33:62–71

    Article  MathSciNet  Google Scholar 

  • Chang K, Pearson K, Zhang T (2008) Perron–Frobenius theorem for nonegative tensors. Commun Math Sci 6:507–520

    Article  MathSciNet  Google Scholar 

  • Chang K, Qi L, Zhang T (2013) A survey on the spectral theory of nonnegative tensors. Numer Linear Algebra Appl 20:891–912

    Article  MathSciNet  Google Scholar 

  • Cooper J, Dutle A (2012) Spectra of uniform hypergraphs. Linear Algebra Appl 436:3268–3292

    Article  MathSciNet  Google Scholar 

  • Friedland S, Gaubert A, Han L (2013) Perron–Frobenius theorems for nonnegative multilinear forms and extensions. Linear Algebra Appl 438:738–749

    Article  MathSciNet  Google Scholar 

  • Har J (2014) A note on Laplacian eigenvalues and domination. Linear Algebra Appl 449:115–118

    Article  MathSciNet  Google Scholar 

  • Haynes TW, Hedetniemi ST, Slater PJ (1998a) Fundamentals of domination in graphs. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  • Haynes TW, Hedetniemi ST, Slater PJ (1998b) Domination in graphs: advanced topics. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  • Henning MA, Löwenstein C (2012) Hypergraphs with large domination number and edge sizes at least 3. Discrete Appl Math 160:1757–1765

    Article  MathSciNet  Google Scholar 

  • Henning MA, Yeo A (2013) Total domination in graphs. Springer, New York

    Book  Google Scholar 

  • Hu S, Qi L, Shao J (2013) Cored hypergraphs, power hypergraphs and their Laplacian \(H\)-eigenvalues. Linear Algebra Appl 439:2980–2998

    Article  MathSciNet  Google Scholar 

  • Hu S, Qi L, Xie J (2015) The largest Laplacian and signless Laplacian \(H\)-eigenvalues of a uniform hypergraph. Linear Algebra Appl 469:1–27

    Article  MathSciNet  Google Scholar 

  • Jose BK, Tuza Zs (2009) Hypergraph domination and strong independence. Appl Anal Discrete Math 3:237–358

    Article  MathSciNet  Google Scholar 

  • Kang L, Li S, Dong Y, Shan E (2017) Matching and domination numbers in \(r\)-uniform hypergraphs. J Comb Optim 34:656–659

    Article  MathSciNet  Google Scholar 

  • Lim LH (2005) Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE international workshop on computational advances in multi-sensor adaptive processing, vol 1. CAMSAP’05, pp 129–132

  • Lu L, Man S (2016) Connected hypergraphs with small spectral radius. Linear Algebra Appl 508:206–227

    Article  MathSciNet  Google Scholar 

  • Nikiforov V (2007) Bounds on graph eignvalues I. Linear Algebra Appl 420:667–671

    Article  MathSciNet  Google Scholar 

  • Qi L (2005) Eigenvalues of a real supersymmetric tensor. J Symb Comput 40:1302–1324

    Article  MathSciNet  Google Scholar 

  • Shao J (2013) A general product of tensors with applications. Linear Algebra Appl 439:2350–2366

    Article  MathSciNet  Google Scholar 

  • Xing R, Zhou B (2015) Laplacian and signless Laplacian spectral radii of graphs with fixed domination number. Math Nachr 188:476–480

    Article  MathSciNet  Google Scholar 

  • Yang Y, Yang Q (2010) Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl 31:2517–2530

    Article  MathSciNet  Google Scholar 

  • Yang Y, Yang Q (2011) On some properties of nonegative weakly irreducible tensors. arXiv:1111.0713v2

  • Zhou J, Sun L, Wang W, Bu C (2014) Some spectral properties of uniform hypergraphs. Electron J Comb 21:#P4.24

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research was supported in part by the National Nature Science Foundation of China (Grant Nos. 11871329, 11571222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfang Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, L., Zhang, W. & Shan, E. The spectral radius and domination number in linear uniform hypergraphs. J Comb Optim 42, 581–592 (2021). https://doi.org/10.1007/s10878-019-00424-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-019-00424-y

Keywords

Navigation