Skip to main content

On the complexity of restoring corrupted colorings

Abstract

In the \(r\)-Fix problem, we are given a graph G, a (non-proper) vertex-coloring \(c : V(G) \rightarrow [r]\), and a positive integer k. The goal is to decide whether a proper r-coloring \(c'\) is obtainable from c by recoloring at most k vertices of G. Recently, Junosza-Szaniawski et al. (in: SOFSEM 2015: theory and practice of computer science, Springer, Berlin, 2015) asked whether the problem has a polynomial kernel parameterized by the number of recolorings k. In a full version of the manuscript, the authors together with Garnero and Montealegre, answered the question in the negative: for every \(r \ge 3\), the problem \(r\)-Fix does not admit a polynomial kernel unless . Independently of their work, we give an alternative proof of the theorem. Furthermore, we study the complexity of \(r\)-Swap, where the only difference from \(r\)-Fix is that instead of k recolorings we have a budget of k color swaps. We show that for every \(r \ge 3\), the problem \(r\)-Swap is -hard whereas \(r\)-Fix is known to be FPT. Moreover, when r is part of the input, we observe both Fix and Swap are -hard parameterized by the treewidth of the input graph. We also study promise variants of the problems, where we are guaranteed that a proper r-coloring \(c'\) is indeed obtainable from c by some finite number of swaps. For instance, we prove that for \(r=3\), the problems \(r\)-Fix-Promise and \(r\)-Swap-Promise are -hard for planar graphs. As a consequence of our reduction, the problems cannot be solved in \(2^{o(\sqrt{n})}\) time unless the Exponential Time Hypothesis fails.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Björklund A, Husfeldt T, Koivisto M (2009) Set partitioning via inclusion–exclusion. SIAM J Comput 39(2):546–563

    MathSciNet  Article  MATH  Google Scholar 

  • Bodlaender HL, Jansen BMP, Kratsch S (2014) Kernelization lower bounds by cross-composition. SIAM J Discrete Math 28(1):277–305

    MathSciNet  Article  MATH  Google Scholar 

  • Bonomo F, Durán G, Marenco J (2008) Exploring the complexity boundary between coloring and list-coloring. Ann Oper Res 169(1):3–16

    MathSciNet  Article  MATH  Google Scholar 

  • Bonsma PS, Mouawad AE, Nishimura N, Raman V (2014) The complexity of bounded length graph recoloring and CSP reconfiguration. In: Proceedings of the 9th international symposium on parameterized and exact computation, IPEC 2014, Wroclaw, 10-12 Sept, pp 110–121

  • Clark SA, Holliday JE, Holliday SH, Johnson P, Trimm JE, Rubalcaba RR, Walsh M (2006) Chromatic villainy in graphs. Congressus Numerantium 182:171

    MathSciNet  MATH  Google Scholar 

  • Cygan M, Fomin FV, Kowalik L, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015) Parameterized algorithms. Springer, Berlin

    Book  MATH  Google Scholar 

  • de Berg M, Buchin K, Jansen BMP, Woeginger GJ (2016) Fine-grained complexity analysis of two classic TSP variants. In: Proceedings of the 43rd international colloquium on automata, languages, and programming, ICALP 2016, Rome, 11–15 July, pp 5:1–5:14

  • Diestel R (2010) Graph theory. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Even S, Selman AL, Yacobi Y (1984) The complexity of promise problems with applications to public-key cryptography. Inf Control 61(2):159–173

    MathSciNet  Article  MATH  Google Scholar 

  • Fellows MR, Fomin FV, Lokshtanov D, Rosamond F, Saurabh S, Szeider S, Thomassen C (2011) On the complexity of some colorful problems parameterized by treewidth. Inf Comput 209(2):143–153

    MathSciNet  Article  MATH  Google Scholar 

  • Fellows MR, Fomin FV, Lokshtanov D, Rosamond F, Saurabh S, Villanger Y (2012) Local search: Is brute-force avoidable? J Comput Syst Sci 78(3):707–719

    MathSciNet  Article  MATH  Google Scholar 

  • Garey MR, Johnson DS, Stockmeyer L (1976) Some simplified NP-complete graph problems. Theor Comput Sci 1(3):237–267

    MathSciNet  Article  MATH  Google Scholar 

  • Garnero V, Junosza-Szaniawski K, Liedloff M, Montealegre P, Rzążewski P (2018) Fixing improper colorings of graphs. Theor Comput Sci 711:66–78

    MathSciNet  Article  MATH  Google Scholar 

  • Goldreich O (2006) On promise problems: a survey. In: Goldreich O, Rosenberg AL, Selman AL (eds) Theoretical computer science. Volume 3895 of lecture notes in computer science. Springer, Berlin, pp 254–290

    Chapter  Google Scholar 

  • Goldreich O (2008) Computational complexity: a conceptual perspective. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Impagliazzo R, Paturi R (2001) On the complexity of \(k\)-SAT. J Comput Syst Sci 62(2):367–375

    MathSciNet  Article  MATH  Google Scholar 

  • Jensen TR, Toft B (2011) Graph coloring problems. Wiley, New York

    MATH  Google Scholar 

  • Johnson DS (1985) The NP-completeness column: an ongoing guide. J Algorithms 6(3):434–451

    MathSciNet  Article  MATH  Google Scholar 

  • Johnson M, Kratsch D, Kratsch S, Patel V, Paulusma D (2014) Finding shortest paths between graph colourings. In: Proceedings of the 9th international symposium on parameterized and exact computation, IPEC 2014, Wroclaw, 10–12 Sept, pp. 221–233

  • Junosza-Szaniawski K, Liedloff M, Rzążewski P (2015) Fixing improper colorings of graphs. In: SOFSEM 2015: theory and practice of computer science. Springer, Berlin, pp 266–276

  • Khuller S, Bhatia R, Pless R (2003) On local search and placement of meters in networks. SIAM J Comput 32(2):470–487

    MathSciNet  Article  MATH  Google Scholar 

  • Kratochvíl J (1993) Precoloring extension with fixed color bound. Acta Math Univ Comen 62:139–153

    MathSciNet  MATH  Google Scholar 

  • Krokhin A, Marx D (2012) On the hardness of losing weight. ACM Trans Algorithms 8(2):1–18

    MathSciNet  Article  MATH  Google Scholar 

  • Lichtenstein D (1982) Planar formulae and their uses. SIAM J Comput 11(2):329–343

    MathSciNet  Article  MATH  Google Scholar 

  • Lokshtanov D, Marx D, Saurabh S (2011) Lower bounds based on the exponential time hypothesis. Bull EATCS 105:41–72

    MathSciNet  MATH  Google Scholar 

  • Mansfield A (1983) Determining the thickness of graphs is NP-hard. In: Mathematical proceedings of the Cambridge Philosophical Society, vol. 93. Cambridge University Press, Cambridge, pp. 9–23

  • Marx D (2004) Graph colouring problems and their applications in scheduling. Electr Eng 48(1–2):11–16

    Google Scholar 

  • Östergård PR (2004) On a hypercube coloring problem. J Comb Theory Ser A 108(2):199–204

    MathSciNet  Article  Google Scholar 

  • Szeider S (2011) The parameterized complexity of \(k\)-flip local search for SAT and MAX SAT. Discrete Optim 8(1):139–145

    MathSciNet  Article  MATH  Google Scholar 

  • Valiant LG, Vazirani VV (1986) NP is as easy as detecting unique solutions. Theor Comput Sci 47:85–93

    MathSciNet  Article  MATH  Google Scholar 

  • West D (2013) Chromatic villainy of graphs. http://www.math.illinois.edu/~dwest/regs/chromvil.html. Accessed 3 Aug 2015

  • Wrochna M (2018) Reconfiguration in bounded bandwidth and tree-depth. J Comput Syst Sci 93:1–10

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juho Lauri.

Additional information

Work partially supported by the Emil Aaltonen Foundation (J.L)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Biasi, M., Lauri, J. On the complexity of restoring corrupted colorings. J Comb Optim 37, 1150–1169 (2019). https://doi.org/10.1007/s10878-018-0342-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-018-0342-2

Keywords

  • Graph coloring
  • Computational complexity
  • Parameterized complexity
  • Combinatorial reconfiguration
  • Local search