Advertisement

Reoptimization of minimum latency problem revisited: don’t panic when asked to revisit the route after local modifications

Article
  • 6 Downloads

Abstract

We study the reoptimization of the Minimum Latency problem (MLP) in metric space with respect to the modifications of adding (resp. removing) a vertex and increasing (resp. decreasing) the cost of an edge \(e^*\). We provide 7 / 3-approximation and 3-approximation algorithms for the modifications of adding and removing a vertex, respectively. For the modification of increasing the cost of an edge \(e^*\), we obtain \(\alpha \)-approximation algorithms where \(\alpha \) changes from 2.1286 to 4 / 3 as \(e^*\) moves from the first edge to the last edge in the given optimal tour of the initial instance. Concerning the case of decreasing the cost of an edge \(e^*\), if \(e^*\) is an edge of the given optimal tour, we get a 2-approximation algorithm. Moreover, if \(e^*\) is the i-th edge of the given optimal tour and i is a constant, we derive a Open image in new window , but prove that an Open image in new window does not exist unless Open image in new window . We also show that the special case where \(i\in \{1,2\}\) is polynomial-time solvable. If \(e^*\) is not in the given optimal tour, we derive a 2.1286-approximation algorithm, where n is the number of vertices. Finally, we show that if an approximation solution instead of an optimal one is given for the initial instance, the reoptimization of MLP with the vertex deletion operation admits no \(\alpha \)-approximation algorithm unless MLP itself admits such an algorithm.

Keywords

Reoptimization Minimum latency Traveling salesman Complexity Approximation algorithm PTAS Metrics 

Notes

Acknowledgements

Wenkai Dai would like to thank Tobias Mömke for his constructive comments on a preliminary version of this paper.

References

  1. Archetti C, Bertazzi L, Speranza MG (2003) Reoptimizing the traveling salesman problem. Networks 42(3):154–159MathSciNetCrossRefMATHGoogle Scholar
  2. Archetti C, Bertazzi L, Speranza MG (2010) Reoptimizing the 0-1 knapsack problem. Discrete Appl Math 158(17):1879–1887MathSciNetCrossRefMATHGoogle Scholar
  3. Argelich J, Manyà F (2006) Exact Max-SAT solvers for over-constrained problems. J Heuristics 12(4–5):375–392CrossRefMATHGoogle Scholar
  4. Ausiello G, Escoffier B, Monnot J, Paschos V (2009) Reoptimization of minimum and maximum traveling salesman’s tours. J Discrete Algorithms 7(4):453–463MathSciNetCrossRefMATHGoogle Scholar
  5. Ausiello G, Bonifaci V, Escoffier B (2011) Complexity and approximation in reoptimization. In: Cooper SB, Sorbi A (eds) Computability in context: computation and logic in the real world. World Scientific, Singapore, pp 101–129CrossRefGoogle Scholar
  6. Berg T, Hempel H (2009) Reoptimization of traveling salesperson problems: changing single edge-weights. In: LATA, pp 141–151Google Scholar
  7. Bilò D, Zych A (2012) New advances in reoptimizing the minimum Steiner tree problem. In: MFCS, pp 184–197Google Scholar
  8. Bilò D, Böckenhauer HJ, Hromkovič J, Královič R, Mömke T, Widmayer P, Zych A (2008a) Reoptimization of Steiner trees. In: SWAT, pp 258–269Google Scholar
  9. Bilò D, Widmayer P, Zych A (2008b) Reoptimization of weighted graph and covering problems. In: WAOA, pp 201–213Google Scholar
  10. Bilò D, Böckenhauer HJ, Komm D, Královič R, Mömke T, Seibert S, Zych A (2011) Reoptimization of the shortest common superstring problem. Algorithmica 61(2):227–251MathSciNetCrossRefMATHGoogle Scholar
  11. Blum A, Chalasani P, Coppersmith D, Pulleyblank WR, Raghavan P, Sudan M (1994) The minimum latency problem. In: STOC, pp 163–171Google Scholar
  12. Böckenhauer HJ, Forlizzi L, Hromkovic J, Kneis J, Kupke J, Proietti G, Widmayer P (2007) On the approximability of TSP on local modifications of optimally solved instances. Algorithmic Oper Res 2(2):83–93MathSciNetMATHGoogle Scholar
  13. Böckenhauer HJ, Hromkovič J, Mömke T, Widmayer P (2008) On the hardness of reoptimization. In: SOFSEM, pp 50–65Google Scholar
  14. Boria N, Croce FD (2014) Reoptimization in machine scheduling. Theor Comput Sci 540–541:13–26MathSciNetCrossRefMATHGoogle Scholar
  15. Boria N, Paschos VT (2011) A survey on combinatorial optimization in dynamic environments. RAIRO Oper Res 45(3):241–294CrossRefMATHGoogle Scholar
  16. Boria N, Monnot J, Paschos VT (2013) Reoptimization of maximum weight induced hereditary subgraph problems. Theor Comput Sci 514:61–74MathSciNetCrossRefMATHGoogle Scholar
  17. Chaudhuri K, Godfrey B, Rao S, Talwar K (2003) Paths, trees, and minimum latency tours. In: FOCS, pp 36–45Google Scholar
  18. Christofides N (1976) Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report 388, Graduate School of Industrial Administration, Carnegie Mellon UniversityGoogle Scholar
  19. Fakcharoenphol J, Harrelson C, Rao S (2007) The \(k\)-traveling repairmen problem. ACM Trans Algorithms 3(4). Article Nr. 40Google Scholar
  20. Goyal K, Mömke T (2015) Robust reoptimization of Steiner trees. In: FSTTCS, pp 10–24Google Scholar
  21. Hromkovič J (2001) Algorithmics for hard problems: introduction to combinatorial optimization, randomization, approximation, and heuristics. Springer, New YorkCrossRefMATHGoogle Scholar
  22. Hutter F, Lindauer M, Balint A, Bayless S, Hoos H, Leyton-Brown K (2017) The configurable SAT solver challenge (CSSC). Artif Intell 243:1–25MathSciNetCrossRefMATHGoogle Scholar
  23. Monnot J (2015) A note on the traveling salesman reoptimization problem under vertex insertion. Inf Process Lett 115(3):435–438MathSciNetCrossRefMATHGoogle Scholar
  24. Papadimitriou CH, Yannakakis M (1993) The traveling salesman problem with distances one and two. Math Oper Res 18(1):1–11MathSciNetCrossRefMATHGoogle Scholar
  25. Schäffter MW (1997) Scheduling with forbidden sets. Discrete Appl Math 72(1–2):155–166MathSciNetCrossRefMATHGoogle Scholar
  26. Sitters R (2002) The minimum latency problem is NP-hard for weighted trees. In: IPCO, pp 230–239Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceSaarland UniversitySaarbrückenGermany
  2. 2.Chair of Economic TheorySaarland UniversitySaarbrückenGermany

Personalised recommendations