Advertisement

Journal of Combinatorial Optimization

, Volume 35, Issue 4, pp 1202–1240 | Cite as

Maximizing misinformation restriction within time and budget constraints

  • Canh V. Pham
  • My T. Thai
  • Hieu V. Duong
  • Bao Q. Bui
  • Huan X. Hoang
Article
  • 113 Downloads

Abstract

Online social networks have become popular media worldwide. However, they also allow rapid dissemination of misinformation causing negative impacts to users. With a source of misinformation, the longer the misinformation spreads, the greater the number of affected users will be. Therefore, it is necessary to prevent the spread of misinformation in a specific time period. In this paper, we propose maximizing misinformation restriction (\(\mathsf {MMR}\)) problem with the purpose of finding a set of nodes whose removal from a social network maximizes the influence reduction from the source of misinformation within time and budget constraints. We demonstrate that the \(\mathsf {MMR}\) problem is NP-hard even in the case where the network is a rooted tree at a single misinformation node and show that the calculating objective function is #P-hard. We also prove that objective function is monotone and submodular. Based on that, we propose an \(1{-}1/\sqrt{e}\)-approximation algorithm. We further design efficient heuristic algorithms, named \(\mathsf {PR}\)-\(\mathsf {DAG}\) to show \(\mathsf {MMR}\) in very large-scale networks.

Keywords

Approximation algorithm Social networks Misinformation Information diffusion 

References

  1. Bhagat S, Goyal A, Lakshmanan LV (2012) Maximizing product adoption in social networks. In: Proceedings of the fifth ACM international conference on Web search and data mining, Seattle, Washington, pp 603–612Google Scholar
  2. Budak C, Agrawal D, Abbadi AE (2011) Limiting the spread of misinformation in social networks, In: Proceedings of the 20th international conference on world wide web, WWW ’11, ACM, New York, NY.  https://doi.org/10.1145/1963405.1963499
  3. Cha M, Mislove A, Gummadi KP (2009) A measurement-driven analysis of information propagation in the Flickr social network. In: Proceedings of the 18th international conference on world wide web, New York, USA, pp 721–730Google Scholar
  4. Chen W, Lakshmanan LVS, Castillo C (2013) Information and influence propagation in social networks. Morgan and Claypool, San RafaelGoogle Scholar
  5. Chen W, Lu W, Zang N (2012) Time-critical influence maximization in social networks with time-delayed diffusion process. In: Proceedings of the twenty-sixth AAAI conference on artificial intelligence, Toronto, Ontario, pp 592–598Google Scholar
  6. Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, Washington, DC, pp 1029–1038Google Scholar
  7. Chen W, Wang C, Wang Y (2010) Scalable influence maximization in social networks under the linear threshold model. In: Proceedings of the 2010 IEEE international conference on data mining, Washington, pp 88–97Google Scholar
  8. Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, New York, USA, pp 57–66Google Scholar
  9. Domm P (2013) False rumor of explosion at white house causes stocks to briefly plunge, AP Confirms Its Twitter Feed Was Hacked CNBC. http://www.cnbc.com/id/100646197(2013). Accessed 23 April 2013
  10. Gentzkow M (2017) Social media and fake news in the 2016 election. Stanford Web. http://news.stanford.edu/2017/01/18/stanford-study-examines-fake-news-2016-presidential-election/ (2017). Accessed 24 June 2017
  11. Goyal A, Lu W, Lakshmanan LVS (2012) SIMPATH: an efficient algorithm for influence maximization under the linear threshold model. In: Proceeding IEEE 11th international conference on data mining, Vancouver, BC, pp 211–220Google Scholar
  12. He X, Song G, Chen W, Jiang Q (2011) Influence blocking maximization in social networks under the competitive linear threshold model technical report, CoRR abs/1110.4723Google Scholar
  13. Hughes AL, Palen L (2009) Twitter adoption and use in mass convergence and emergency events. Int J Emerg Manage 6(3):248–260CrossRefGoogle Scholar
  14. Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining.  https://doi.org/10.1145/956750.956769
  15. Khalil EB, Dilkina B,Song L (2014) Scalable diffusion-aware optimization of network topology. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, New York, pp 1226–1235Google Scholar
  16. Khuller S, Moss A, Naor JS (1999) The budgeted maximum coverage problem. Inf Process Lett 70(1):39–45MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kimura M, Saito K, Motoda H (2008) Solving the contamination minimization problem on networks for the linear threshold model. In: Pacific rim international conference on artificial intelligence.  https://doi.org/10.1007/978-3-540-89197-0_94
  18. Kimura M, Saito K, Motoda H (2009) Blocking links to minimize contamination spread in a social network. In: ACM transactions on knowledge discovery from data.  https://doi.org/10.1145/1514888.1514892
  19. Kottasov I (2017) Facebook targets 30,000 fake accounts in France. CNN media Web. http://money.cnn.com/2017/04/14/media/facebook-fake-news-france-election/index.html. Accessed 24 June 2017
  20. Kwon S, Cha M, Jung K, Chen W, and Wang Y (2013) Prominent features of rumor propagation in online social media. In: Proceeding of IEEE 13th international conference on data mining.  https://doi.org/10.1109/ICDM.2013.61
  21. Leskovec J, Adamic LA, Huberman BA (2007) The dynamics of viral marketing. ACM Trans Web.  https://doi.org/10.1145/1232722 Google Scholar
  22. Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceeding of ACM SIGKDD international conference on knowledge discovery and data mining.  https://doi.org/10.1145/1081870.1081893
  23. Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data 1(1):2CrossRefGoogle Scholar
  24. Liu B, Cong G, Xu D, Zheng Y (2012) Time constrained influence maximization in social networks. In: Proceeding of IEEE 12th international conference on data mining, Belgium, Brussels, pp 439–448Google Scholar
  25. Nguyen H, Zheng R (2013) On budgeted influence maximization in social networks. IEEE J Sel Areas Commun 31(6):1084–1094CrossRefGoogle Scholar
  26. Nguyen NP, Yan G, Thai MT (2013) Analysis of misinformation containment in online social networks. Comput Netw 57:21332146CrossRefGoogle Scholar
  27. Qazvinian V, Rosengren E, Radev DR, Mei Q (2011) Rumor has it: identifying misinformation in microblogs. In: Proceedings of the conference on empirical methods in natural language processing, Edinburgh, pp 1589–1599Google Scholar
  28. Richardson M, Agrawal R, Domingos P (2003)Trust management for the semantic web. In: Proceeding of international semantic web conference.  https://doi.org/10.1007/978-3-540-39718-2_23
  29. Sutter JD (2017) How bin Laden news spread on Twitter. CNN Web. http://edition.cnn.com/2011/TECH/social.media/05/02/osama.bin.laden.twitter/index.html. Accessed 23 June 2017
  30. Valiant LG (1979) The complexity of enumeration and reliability problems. SIAM J Comput 8(3):410–421MathSciNetCrossRefzbMATHGoogle Scholar
  31. Wolfsfeld G, Segev E, Sheafer T (2013) Social media and the Arab Spring: politics comes first. Int J Press Polit 18(2):115–137CrossRefGoogle Scholar
  32. Yadron D (2017) Twitter deletes 125,000 Isis accounts and expands anti-terror teams. The Guardian Web. https://www.theguardian.com/technology/2016/feb/05/twitter-deletes-isis-accounts-terrorism-online. Accessed 24 June 2017
  33. Zhang H, Alim M, Li X, My TT, Nguyen H (2016a) Misinformation in online social networks: catch them all with limited budget. ACM Trans Inf Syst 34(3):18Google Scholar
  34. Zhang Y, Adigay A, Saha S, Vullikanti A, Prakash A (2016b) Near-optimal algorithms for controlling propagation at group scale on networks. IEEE Trans Knowl Data Eng.  https://doi.org/10.1109/TKDE.2016.2605088
  35. Zhang H, Dinh TN, Thai MT (2013) Maximizing the spread of positive influence in online social networks. In: Proceeding IEEE 33rd international conference on distributed computing systems, Philadelphia, PA, pp 317-326Google Scholar
  36. Zhang H, Kuhnle A, Zhang H, Thai MT (2016c) Detecting misinformation in online social networks before it is too late. In: Proceeding IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM).  https://doi.org/10.1109/ASONAM.2016.7752288
  37. Zhang Y, Prakash B (2015) Data-aware vaccine allocation over large networks. ACM Trans Knowl Discov Data.  https://doi.org/10.1145/2803176
  38. Zhang Y, Prakash BA (2014) Scalable vaccine distribution in large graphs given uncertain data. In: Proceeding of the ACM international conference on information and knowledge management, Shanghai, pp 1719–1728Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Canh V. Pham
    • 3
  • My T. Thai
    • 1
    • 2
  • Hieu V. Duong
    • 4
  • Bao Q. Bui
    • 4
  • Huan X. Hoang
    • 3
  1. 1.Division of Algorithms and Technologies for Networks Analysis & Faculty of Information TechnologyTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Department of Computer and Information Science and EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.University of Engineering and Technology, Vietnam National UniversityHanoiVietnam
  4. 4.Faculty of Information Technology and SecurityPeople’s Security Academy HanoiHanoiVietnam

Personalised recommendations