On vertex-parity edge-colorings

Abstract

A vertex signature \(\pi \) of a finite graph G is any mapping \(\pi \,{:}\,V(G)\rightarrow \{0,1\}\). An edge-coloring of G is said to be vertex-parity for the pair \((G,\pi )\) if for every vertex v each color used on the edges incident to v appears in parity accordance with \(\pi \), i.e. an even or odd number of times depending on whether \(\pi (v)\) equals 0 or 1, respectively. The minimum number of colors for which \((G,\pi )\) admits such an edge-coloring is denoted by \(\chi '_p(G,\pi )\). We characterize the existence and prove that \(\chi '_p(G,\pi )\) is at most 6. Furthermore, we give a structural characterization of the pairs \((G,\pi )\) for which \(\chi '_p(G,\pi )=5\) and \(\chi '_p(G,\pi )=6\). In the last part of the paper, we consider a weaker version of the coloring, where it suffices that at every vertex, at least one color appears in parity accordance with \(\pi \). We show that the corresponding chromatic index is at most 3 and give a complete characterization for it.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akiyama J, Kano M (2011) Factors and factorizations of graphs: proof techniques in factor theory. Springer, New York

    Google Scholar 

  2. Atanasov R, Petruševski M, Škrekovski R (2016) Odd edge-colorability of subcubic graphs. Ars Math Contemp 10(2):359–370

    MathSciNet  MATH  Google Scholar 

  3. Bondy JA, Murty USR (2008) Graph theory, graduate texts in mathematics, vol 244. Springer, New York

    Google Scholar 

  4. Bondy JA, Murty USR (1976) Graph theory with applications. Elsevier, North-Holland

    Google Scholar 

  5. Czap J, Jendrol’ S, Kardoš F’, Soták R (2012) Facial parity edge colouring of plane pseudographs. Discrete Math 312:2735–2740

    MathSciNet  Article  MATH  Google Scholar 

  6. Jaeger F (1979) Flows and generalized coloring theorems in graphs. J Combin Theory Ser B 26:205–216

    MathSciNet  Article  MATH  Google Scholar 

  7. Lužar B, Petruševski M, Škrekovski R (2015) Odd edge coloring of graphs. Ars Math Contemp 9:277–287

    MathSciNet  MATH  Google Scholar 

  8. Lužar B, Škrekovski R (2013) Improved bound on facial parity edge coloring. Discrete Math 313:2218–2222

    MathSciNet  Article  MATH  Google Scholar 

  9. Lovász L (1972) The factorization of graphs II. Acta Math Acad Sci Hungar 23:465–478

    MathSciNet  Article  MATH  Google Scholar 

  10. Petruševski M (2015) A note on weak odd edge colorings of graphs. Adv Math Sci J 4:7–10

    MATH  Google Scholar 

  11. Petruševski M (2017) Odd \(4\)-edge-colorability of graphs. J Graph Theory. doi:10.1002/jgt.22168

    Google Scholar 

  12. Pyber L (1991) Covering the edges of a graph by..., sets, graphs and numbers. Colloq Math Soc János Bolyai 60:583–610

    MATH  Google Scholar 

  13. Schrijver A (2003) Combinatorial optimization. Polyhedra and efficiency, Vol A: Algorithms and combinatorics. Springer, Berlin

  14. Seymour PD (1979) Sums of circuits. In: Bondy A, Murty USR (eds) Graph theory and related topics. Academic Press, New York, pp 342–355

    Google Scholar 

  15. Shu J, Zhang C-Q, Zhang T (2012) Flows and parity subgraphs of graphs with large odd-edge-connectivity. J Combin Theory Ser B 102:839–851

    MathSciNet  Article  MATH  Google Scholar 

  16. Szabó J (2006) Graph packings and the degree prescribed subgraph problem, Eötvös Loránd University. Doctoral thesis

  17. Szekeres G (1973) Polyhedral decompositions of cubic graphs. Bull Austral Math Soc 8:367–387

    MathSciNet  Article  MATH  Google Scholar 

  18. West D B (2001) Introduction to graph theory. Pearson Education, London

    Google Scholar 

  19. Yu Q R, Liu G (2009) Graph factors and matching extensions. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by Slovenian Research Agency Program P1-0383.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Borut Lužar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lužar, B., Petruševski, M. & Škrekovski, R. On vertex-parity edge-colorings. J Comb Optim 35, 373–388 (2018). https://doi.org/10.1007/s10878-017-0178-1

Download citation

Keywords

  • Vertex-parity edge-coloring
  • Vertex-parity chromatic index
  • Weak vertex-parity edge-coloring
  • Vertex signature