Skip to main content
Log in

A compact representation for minimizers of k-submodular functions

Journal of Combinatorial Optimization Aims and scope Submit manuscript

Cite this article

Abstract

A k-submodular function is a generalization of submodular and bisubmodular functions. This paper establishes a compact representation for minimizers of a k-submodular function by a poset with inconsistent pairs (PIP). This is a generalization of Ando–Fujishige’s signed poset representation for minimizers of a bisubmodular function. We completely characterize the class of PIPs (elementary PIPs) arising from k-submodular functions. We give algorithms to construct the elementary PIP of minimizers of a k-submodular function f for three cases: (i) a minimizing oracle of f is available, (ii) f is network-representable, and (iii) f arises from a Potts energy function. Furthermore, we provide an efficient enumeration algorithm for all maximal minimizers of a Potts k-submodular function. Our results are applicable to obtain all maximal persistent labelings in actual computer vision problems. We present experimental results for real vision instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ando K, Fujishige S (1994) \(\sqcup ,\sqcap \)-closed families and signed posets. Technical report, Forschungsinstitut für Diskrete Mathematik, Universität Bonn

  • Ardila F, Owen M, Sullivant S (2012) Geodesics in CAT(0) cubical complexes. Adv Appl Math 48:142–163

    Article  MathSciNet  MATH  Google Scholar 

  • Babenko MA, Karzanov AV (2012) On weighted multicommodity flows in directed networks. arXiv:1212.0224v1

  • Barthélemy J-P, Constantin J (1993) Median graphs, parallelism and posets. Discret Math 111(1–3):49–63

    Article  MathSciNet  MATH  Google Scholar 

  • Bouchet A (1997) Multimatroids I. Coverings by independent sets. SIAM J Discret Math 10:626–646

    Article  MathSciNet  MATH  Google Scholar 

  • Chepoi V (2012) Nice labeling problem for event structures: a counterexample. SIAM J Comput 41:715–727

    Article  MathSciNet  MATH  Google Scholar 

  • Feder T (1994) Network flow and 2-satisfiability. Algorithmica 11:291–319

    Article  MathSciNet  MATH  Google Scholar 

  • Fujishige S (1995) Submodular functions and combinatorial optimization (in Japanese). In: Proceedings of the 7th research association of mathematical programming symposium (RAMP 1995), pp 13–28

  • Gridchyn I, Kolmogorov V (2013) Potts model, parametric maxflow and \(k\)-submodular functions. In: Proceedings of the IEEE international conference on computer vision (ICCV 2013), pp 2320–2327

  • Hirai H (2010) A note on multiflow locking theorem. J Op Res Soc Jpn 53(2):149–156

    MathSciNet  MATH  Google Scholar 

  • Hirai H (2015) L-extendable functions and a proximity scaling algorithm for minimum cost multiflow problem. Discret Optim 18:1–37

    Article  MathSciNet  MATH  Google Scholar 

  • Hirai H, Iwamasa Y (2016) On \(k\)-submodular relaxation. SIAM J Discret Math 30:1726–1736

    Article  MathSciNet  MATH  Google Scholar 

  • Hirai H, Oki T (2016) A compact representation for minimizers of \(k\)-submodular functions (extended abstract). In: Proceedings of the 4th international symposium on combinatorial optimization (ISCO 2016), volume 9849 of lecture notes in computer science, Springer, Cham, pp 381–392

  • Huber A, Kolmogorov V (2012) Towards minimizing \(k\)-submodular functions. In: Proceedings of the 2nd international symposium on combinatorial optimization (ISCO 2012), Volume 7422 of lecture notes in computer science, Springer, Heidelberg, pp 451–462

  • Ibaraki T, Karzanov AV, Nagamochi H (1998) A fast algorithm for finding a maximum free multiflow in an inner eulerian network and some generalizations. Combinatorica 18:61–83

    Article  MathSciNet  MATH  Google Scholar 

  • Iwamasa Y (2017) On a general framework for network representability in discrete optimization. J Comb Optim. doi:10.1007/s10878-017-0136-y

  • Iwata S, Tanigawa S, Yoshida Y (2016a) Improved approximation algorithms for \(k\)-submodular function maximization. In: Proceedings of the 27th annual ACM-SIAM symposium on discrete algorithms (SODA 2016), pp 404–413

  • Iwata Y, Wahlström M, Yoshida Y (2016b) Half-integrality, LP-branching and FPT algorithms. SIAM J Comput 45:1377–1411

  • Kavvadias DJ, Sideri M, Stavropoulos EC (2000) Generating all maximal models of a Boolean expression. Inf Process Lett 74:157–162

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov V, Thapper J, Živný S (2015) The power of linear programming for general-valued CSPs. SIAM J Comput 44:1–36

    Article  MathSciNet  MATH  Google Scholar 

  • Kovtun I (2003) Partial optimal labeling search for a NP-hard subclass of (max,+) problems. In: Proceedings of the 25th German association for pattern recognition (DAGM 2003), volume 2781 of lecture notes in computer science, Springer, Heidelberg, pp 402–409

  • Murota K (2000) Matrices and matroids for systems analysis. Springer, Berlin

    MATH  Google Scholar 

  • Nielsen M, Plotkin G, Winskel G (1981) Petri nets, event structures and domains, part I. Theor Comput Sci 13:85–108

    Article  MATH  Google Scholar 

  • Orlin JB (2013) Max flows in \(\text{O}(nm)\) time, or better. In: Proceedings of the 45th annual ACM Symposium on theory of computing (STOC 2013), pp 765–774

  • Picard J-C, Queyranne M (1980) On the structure of all minimum cuts in a network and applications. In: Rayward-Smith VJ (ed) Combinatorial optimization II, volume 13 of mathematical programming studies. Springer, Berlin, pp 8–16. doi:10.1007/BFb0120902

  • Reiner V (1993) Signed posets. J Comb Theory Ser A 62:324–360

    Article  MathSciNet  MATH  Google Scholar 

  • Scharstein D, Szeliski R (2003) High-accuracy stereo depth maps using structured light. In: Proceedings of the 2003 IEEE computer society conference on computer vision and pattern recognition (CVPR 2003), pp 195–202

  • Scharstein D, Szeliski R, Zabih R (2001) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. In: Proceedings of the IEEE workshop on stereo and multi-baseline vision (SMBV 2001), pp 131–140

  • Sholander M (1954) Medians and betweenness. Proc Am Math Soc 5(5):801–807

    Article  MathSciNet  MATH  Google Scholar 

  • Squire MB (1995) Enumerating the ideals of a poset. Technical report, North Carolina State University

Download references

Acknowledgements

We thank Kazuo Murota, Satoru Fujishige, and the referees for helpful comments. This work was partially supported by JSPS KAKENHI Grant Numbers 25280004, 26330023, 26280004, and by JST, ERATO, Kawarabayashi Large Graph Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taihei Oki.

Additional information

An earlier version of this paper was presented at the 4th International Symposium on Combinatorial Optimization (ISCO 2016), Vietri sul Mare, Italy, May 16–18, 2016.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirai, H., Oki, T. A compact representation for minimizers of k-submodular functions. J Comb Optim 36, 709–741 (2018). https://doi.org/10.1007/s10878-017-0142-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0142-0

Keywords

Navigation