Skip to main content
Log in

An FPTAS for generalized absolute 1-center problem in vertex-weighted graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Given a vertex-weighted undirected connected graph \(G = (V, E, \ell , \rho )\), where each edge \(e \in E\) has a length \(\ell (e) > 0\) and each vertex \(v \in V\) has a weight \(\rho (v) > 0\), a subset \(T \subseteq V\) of vertices and a set S containing all the points on edges in a subset \(E' \subseteq E\) of edges, the generalized absolute 1-center problem (GA1CP), an extension of the classic vertex-weighted absolute 1-center problem (A1CP), asks to find a point from S such that the longest weighted shortest path distance in G from it to T is minimized. This paper presents a simple FPTAS for GA1CP by traversing the edges in \(E'\) using a positive real number as step size. The FPTAS takes \(O( |E| |V| + |V|^2 \log \log |V| + \frac{1}{\epsilon } |E'| |T| {\mathcal {R}})\) time, where \({\mathcal {R}}\) is an input parameter size of the problem instance, for any given \(\epsilon > 0\). For instances with a small input parameter size \({\mathcal {R}}\), applying the FPTAS with \(\epsilon = \Theta (1)\) to the classic vertex-weighted A1CP can produce a \((1 + \Theta (1))\)-approximation in at most O(|E| |V|) time when the distance matrix is known and \(O(|E| |V| + |V|^2 \log \log |V|)\) time when the distance matrix is unknown, which are smaller than Kariv and Hakimi’s \(O(|E| |V| \log |V|)\)-time algorithm and \(O(|E| |V| \log |V| + |V|^3)\)-time algorithm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Qiu, K. An FPTAS for generalized absolute 1-center problem in vertex-weighted graphs. J Comb Optim 34, 1084–1095 (2017). https://doi.org/10.1007/s10878-017-0130-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0130-4

Keywords

Navigation