Skip to main content
Log in

The k-hop connected dominating set problem: approximation and hardness

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (\({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\)). We prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {NP}\)-hard on planar bipartite graphs of maximum degree 4. We also prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {APX}\)-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) on bipartite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complexity of computing this graph parameter. On the positive side, we show an approximation algorithm for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\). Finally, when \(k=1\), we present two new approximation algorithms for the weighted version of the problem restricted to graphs with a polynomially bounded number of minimal separators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amiri SA, de Mendez PO, Rabinovich R, Siebertz S (2017) Distributed domination on graph classes of bounded expansion. ArXiv pre-prints arXiv:1702.02848

  • Arvind K, Regan CP (1992) Connected domination and Steiner set on weighted permutation graphs. Inf Process Lett 41(4):215–220

    Article  MathSciNet  MATH  Google Scholar 

  • Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M (1999) Complexity and approximation. Springer, Berlin

    Book  MATH  Google Scholar 

  • Berry A, Bordat J, Cogis O (1999) Generating all the minimal separators of a graph. Proceedings of the 25th international workshop on graph-theoretic concepts in computer science. Springer, Berlin, pp 167–172

    Chapter  Google Scholar 

  • Blum J, Ding M, Thaeler A, Cheng X (2005) Connected dominating set in sensor networks and MANETs. In: Du D, Pardalos PM (eds) Handbook of combinatorial optimization. Springer, Berlin, pp 329–369

    Chapter  Google Scholar 

  • Bondy JA, Murty USR (2008) Graph theory. Graduate texts in mathematics, vol 244. Springer, New York

  • Bonsma P (2012) Max-leaves spanning tree is APX-hard for cubic graphs. J Discrete Algorithms 12:14–23

    Article  MathSciNet  MATH  Google Scholar 

  • Bonsma P, Zickfeld F (2008) A 3/2-approximation algorithm for finding spanning trees with many leaves in cubic graphs. In: Graph-Theoretic concepts in computer science. 34th international workshop, WG 2008, Springer, Berlin, pp 66–77 Springer, Berlin

  • Borradaile G, Le H (2015) Optimal dynamic program for \(r\)-domination problems over tree decompositions. CoRR arXiv:1502.00716

  • Brandstädt A, Dragan FF (1998) A linear-time algorithm for connected \(r\)-domination and Steiner tree on distance-hereditary graphs. Networks 31(3):177–182

    Article  MathSciNet  MATH  Google Scholar 

  • Brandstädt A, Le VB, Spinrad JP (1987) Graph classes: a survey. Society for Industrial Mathematics, Philadelphia, Monographs on discrete mathematics and applications

    MATH  Google Scholar 

  • Chandran LS, Grandoni F (2006) A linear time algorithm to list the minimal separators of chordal graphs. Discrete Math 306(3):351–358

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng X, Huang X, Li D, Wu W, Du D (2003) A polynomial-time approximation scheme for the minimum connected dominating set in ad hoc wireless networks. Networks 42:202–208

    Article  MathSciNet  MATH  Google Scholar 

  • Chlebík M, Chlebíková J (2004) Approximation hardness of dominating set problems. In: European symposium on algorithms. Springer, pp 192–203

  • Chlebík M, Chlebíková J (2008) Approximation hardness of dominating set problems in bounded degree graphs. Inf Comput 206(11):1264–1275

    Article  MathSciNet  MATH  Google Scholar 

  • Chvátal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233–235

    Article  MathSciNet  MATH  Google Scholar 

  • Coelho RS, Moura PFS, Wakabayashi Y (2015) The \(k\)-hop connected dominating set problem: hardness and polyhedra. Electron Notes Discrete Math 50:59–64

    Article  MATH  Google Scholar 

  • Cohen-Addad V, Colin de Verdière E, Klein PN, Mathieu C, Meierfrankenfeld D (2016) Approximating connectivity domination inweighted bounded-genus graphs. Proceedings of the forty-eighth annual ACM symposium on theory of computing, STOC ’16. ACM, New York, pp 584–597

    Google Scholar 

  • Colbourn CJ, Stewart LK (1990) Permutation graphs: connected domination and Steiner trees. Discrete Math 86(1):179–189

    Article  MathSciNet  MATH  Google Scholar 

  • D’Atri A, Moscarini M (1988) Distance-hereditary graphs, Steiner trees, and connected domination. SIAM J Comput 17(3):521–538

    Article  MathSciNet  MATH  Google Scholar 

  • Demaine ED, Hajiaghayi M (2005) Bidimensionality: new connections between FPT algorithms and PTASs. In: Proceedings of the sixteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’05. Society for Industrial and Applied Mathematics, pp 590–601

  • Dhanalakshmi S, Sadagopan N, Manogna V (2016) On \(2{K}_2\)-free graphs-structural and combinatorial view. ArXiv pre-prints arXiv:1602.03802

  • Dinur I, Safra S (2005) On the hardness of approximating minimum vertex cover. Ann Math 162(1):439–485

    Article  MathSciNet  MATH  Google Scholar 

  • Dinur I, Guruswami V, Khot S, Regev O (2005) A new multilayered PCP and the hardness of hypergraph vertex cover. SIAM J Comput 34(5):1129–1146

    Article  MathSciNet  MATH  Google Scholar 

  • Dragan F (1993) HT-graphs: centers, connected \(r\)-domination and Steiner trees. Comput Sci 1(2):64–83

    MathSciNet  Google Scholar 

  • Du D, Wan P (2012) Connected dominating set: theory and applications. Springer, Berlin

    MATH  Google Scholar 

  • Du D, Graham RL, Pardalos PM, Wan P, Wu W, Zhao W (2008) Analysis of greedy approximations with nonsubmodular potential functions. In: Proceedings of the ACM-SIAM symposium on discrete algorithms, pp 167–175

  • Dubhashi D, Mei A, Panconesi A, Radhakrishnan J, Srinivasan A (2005) Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons. J Comput Syst Sci 71(4):467–479

    Article  MathSciNet  MATH  Google Scholar 

  • Escoffier B, Gourvès L, Monnot J (2010) Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs. J Discrete Algorithms 8(1):36–49

    Article  MathSciNet  MATH  Google Scholar 

  • Fernau H, Manlove DF (2009) Vertex and edge covers with clustering properties: complexity and algorithms. J Discrete Algorithms 7(2):149–167

    Article  MathSciNet  MATH  Google Scholar 

  • Gao X, Wang W, Zhang Z, Zhu S, Wu W (2010) A PTAS for minimum \(d\)-hop connected dominating set in growth-bounded graphs. Optim Lett 4(3):321–333

    Article  MathSciNet  MATH  Google Scholar 

  • Golumbic MC (2004) Algorithmic graph theory and perfect graphs, vol 57. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Guha S, Khuller S (1998) Approximation algorithms for connected dominating sets. Algorithmica 20(4):374–387

    Article  MathSciNet  MATH  Google Scholar 

  • Guha S, Khuller S (1999) Improved methods for approximating node weighted Steiner trees and connected dominating sets. Inf Comput 150(1):57–74

    Article  MathSciNet  MATH  Google Scholar 

  • Gyárfás A (1998) Generalized split graphs and Ramsey numbers. J Comb Theory A 81(2):255–261

    Article  MathSciNet  MATH  Google Scholar 

  • Haglin DJ, Venkatesan SM (1991) Approximation and intractability results for the maximum cut problem and its variants. IEEE Trans Comput 40(1):110–113

    Article  MathSciNet  Google Scholar 

  • Haynes TW, Hedetniemi S, Slater P (1998) Fundamentals of domination in graphs. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Heggernes P, Kratsch D (2007) Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic J Comput 14(1):87–108

    MathSciNet  MATH  Google Scholar 

  • Hong-Gwa Y, Chang GJ (1998) Weighted connected domination and Steiner trees in distance-hereditary graphs. Discrete Appl Math 87(1):245–253

    Article  MathSciNet  MATH  Google Scholar 

  • Jallu RK, Prasad PR, Das GK (2017) Distributed construction of connected dominating set in unit disk graphs. J Parallel Distrib Comput 104:159–166

    Article  Google Scholar 

  • Kanté M, Limouzy V, Mary A (2011) Nourine L. Enumeration of minimal dominating sets and variants Lecture notes in computer science 6914:298–309

    Google Scholar 

  • Khuller S, Yang S (2016) Revisiting connected dominating sets: an optimal local algorithm. In: Jansen C, Mathieu K, Rolim JDP, Umans C (eds) Approximation, randomization, and combinatorial optimization. Algorithms and techniques (APPROX/RANDOM 2016), Leibniz international proceedings in informatics (LIPIcs), vol 60. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, pp 11:1–11:12

  • Kloks T, Kratsch D (1998) Listing all minimal separators of a graph. SIAM J Comput 27(3):605–613

    Article  MathSciNet  MATH  Google Scholar 

  • Liang YD (1995) Steiner set and connected domination in trapezoid graphs. Inf Process Lett 56(2):101–108

    Article  MathSciNet  Google Scholar 

  • Lokshtanov D, Misra N, Philip G, Ramanujan MS, Saurabh S (2013) Hardness of \(r\)-dominating set on graphs with diameter \(r + 1\). In: G. Gutin, S. Szeider (eds) Parameterized and exact computation. Lecture notes in computer science, vol 8246. Springer, Berlin, pp 255–267

  • Moscarini M (1993) Doubly chordal graphs, Steiner trees, and connected domination. Networks 23(1):59–69

    Article  MathSciNet  MATH  Google Scholar 

  • Müller H, Brandstädt A (1987) The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs. Theor Comput Sci 53(2):257–265

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen TN, Huynh DT (2006) Connected \(d\)-hop dominating sets in mobile ad hoc networks. In: Proceedings of the 4th international symposium on modeling and optimization in mobile ad hoc and wireless networks, pp 1–8

  • Nieberg T, Hurink J (2006) A PTAS for the minimum dominating set problem in unit disk graphs. In: Erlebach T, Persiano G (eds) Approximation and Online Algorithms, WAOA 2005, vol 3879. Lecture Notes in Computer Science. Springer, Berlin, pp 296–306

  • Nikolopoulos SD, Palios L (2006) Minimal separators in \({P}_4\)-sparse graphs. Discrete Math 306(3):381–392

    Article  MathSciNet  MATH  Google Scholar 

  • Ramalingam G, Rangan CP (1988) A unified approach to domination problems on interval graphs. Inf Process Lett 27(5):271–274

    Article  MathSciNet  MATH  Google Scholar 

  • Ren W, Zhao Q (2011) A note on ‘Algorithms for connected set cover problem and fault-tolerant connected set cover problem’. Theor Comput Sci 412(45):6451–6454

    Article  MATH  Google Scholar 

  • Ruan L, Du H, Jia X, Wu W, Li Y, Ko K (2004) A greedy approximation for minimum connected dominating sets. Theor Comput Sci 329(1–3):325–330

    Article  MathSciNet  MATH  Google Scholar 

  • Wan P, Alzoubi KM, Frieder O (2002) Distributed construction of connected dominating set in wireless ad hoc networks. Proceedings of the twenty-first annual joint conference of the IEEE computer and communications societies 3:1597–1604

    Article  Google Scholar 

  • White K, Farber M, Pulleyblank W (1985) Steiner trees, connected domination and strongly chordal graphs. Networks 15(1):109–124

    Article  MathSciNet  MATH  Google Scholar 

  • Yadav AK, Yadav RS, Singh R, Singh AK (2015) Connected dominating set for wireless ad hoc networks: a survey. Int J Eng Syst Model Simul 7(1):22–34

    MathSciNet  Google Scholar 

  • Yu J, Wang N, Wang G, Yu D (2013) Connected dominating sets in wireless ad hoc and sensor networks–a comprehensive survey. Comput Commun 36(2):121–134

    Article  Google Scholar 

  • Zhang Z, Gao X, Wu W, Du D (2009) A PTAS for minimum connected dominating set in 3-dimensional wireless sensor networks. J Glob Optim 45(3):451–458

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for the valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael S. Coelho.

Additional information

Research supported by CNPq (Proc. 456792/2014-7), FAPESP (Proc. 2013/03447-6) and MaCLinC project of NUMEC/USP. R.S. Coelho is supported by CAPES, P.F.S. Moura is supported by FAPESP (Proc. 2013/19179-0, 2015/11930-4) and Y. Wakabayashi is partially supported by CNPq Grant (Proc. 306464/2016-0).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, R.S., Moura, P.F.S. & Wakabayashi, Y. The k-hop connected dominating set problem: approximation and hardness. J Comb Optim 34, 1060–1083 (2017). https://doi.org/10.1007/s10878-017-0128-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0128-y

Keywords

Navigation