## Abstract

The Kidney Exchange Problem (KEP) is a combinatorial optimization problem and has attracted the attention from the community of integer programming/combinatorial optimisation in the past few years. Defined on a directed graph, the KEP has two variations: one concerns cycles only, and the other, cycles as well as chains on the same graph. We call the former a Cardinality Constrained Multi-cycle Problem (CCMcP) and the latter a Cardinality Constrained Cycles and Chains Problem (CCCCP). The cardinality for cycles is restricted in both CCMcP and CCCCP. As for chains, some studies in the literature considered cardinality restrictions, whereas others did not. The CCMcP can be viewed as an Asymmetric Travelling Salesman Problem that *does* allow subtours, however these subtours are constrained by cardinality, and that it is not necessary to visit all vertices. In existing literature of the KEP, the cardinality constraint for cycles is usually considered to be small (to the best of our knowledge, no more than six). In a CCCCP, each vertex on the directed graph can be included in at most one cycle or chain, but not both. The CCMcP and the CCCCP are interesting and challenging combinatorial optimization problems in their own rights, particularly due to their similarities to some travelling salesman- and vehicle routing-family of problems. In this paper, our main focus is to review the existing mathematical programming models and solution methods in the literature, analyse the performance of these models, and identify future research directions. Further, we propose a polynomial-sized and an exponential-sized mixed-integer linear programming model, discuss a number of stronger constraints for cardinality-infeasible-cycle elimination for the latter, and present some preliminary numerical results.

This is a preview of subscription content, log in to check access.

## References

Abraham DJ, Blum A, Sandholm T (2007) Clearing algorithms for barter exchange markets: enabling nationwide kidney exchanges. In: Proceedings of the 8th ACM conference on electronic commerce, EC ’07. ACM, New York, pp 295–304

Anderson R, Ashlagi I, Gamarnik D (2015) Finding long chains in kidney exchange using the traveling salesman problem. Proc Natl Acad Sci 112:663–668

Ashlagi I, Gilchrist DS, Roth AE, Rees MA (2011) Nonsimultaneous chains and dominos in kidney- paired donation revisited. Am J Transpl 11:984–994

Bai G (2009) A new algorithm for \(k\)-cardinality assignment problem. In: International conference on computational intelligence and software engineering, 2009, CiSE 2009, pp 1–4

Baldacci R, Toth P, Vigo D (2010) Exact algorithms for routing problems under vehicle capacity constraints. Ann Oper Res 175:213–245

Bauer P, Linderoth J, Savelsbergh M (2002) A branch and cut approach to the cardinality constrained circuit problem. Math Program 91:307–348

Biró P, Manlove D, Rizzi R (2009) Maximum weight cycle packing in directed graphs, with application to kidney exchange programs. Discret Math Algorithms Appl 1:499–517

Boland N, Clarke L, Nemhauser G (2000) The asymmetric traveling salesman problem with replenishment arcs. Eur J Oper Res 123:408–427

Cao B, Glover F (1997) Tabu search and ejection chains—application to a node weighted version of the cardinality-constrained tsp. Manage Sci 43:908–921

Chen Y, Kalbfleisch JD, Li Y, Song PXK, Zhou Y (2012) Computerized platform for optimal organ allocations in kidney exchanges

Constantino M, Klimentova X, Viana A, Rais A (2013) New insights on integer-programming models for the kidney exchange problem. Eur J Oper Res 231:57–68

Cornuejols G, Harche F (1993) Polyhedral study of the capacitated vehicle routing problem. Math Program 60:21–52

Dell’Amico M, Martello S (1997) The \(k\)-cardinality assignment problem. Discret Appl Math 76:103–121

Dickerson JP, Procaccia AD, Sandholm T (2012) Optimizing kidney exchange with transplant chains: theory and reality. In: Proceedings of the 11th international conference on autonomous agents and multiagent systems, vol. 2, AAMAS ’12. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp 711–718

Fischetti M, Gonzlez JJS, Toth P (1998) Solving the orienteering problem through branch-and-cut. INFORMS J Comput 10:133–148

Gate SF (2015) 9-way kidney swap involving 18 surgeries at 2 S.F. hospitals. http://www.sfgate.com/health/article/9-way-kidney-swap-involving-18-surgeries-at-2-6307975.php

Gentry SE, Segev DL, Simmerling M, Montgomery RA (2007) Expanding kidney paired donation through participation by compatible pairs. Am J Transpl 7:2361–2370

Gentry SE, Montgomery RA, Swihart BJ, Segev DL (2009) The roles of dominos and nonsimultaneous chains in kidney paired donation. Am J Transpl 9:1330–1336

Gentry SE, Montgomery RA, Segev DL (2011) Kidney paired donation: fundamentals, limitations, and expansions. Am J Kidney Dis 57:144–151

Glorie KM, van de Klundert JJ, Wagelmans APM (2014) Kidney exchange with long chains: An efficient pricing algorithm for clearing barter exchanges with branch-and-price. Manuf Serv Oper Manage 16:498–512

Hartmann M, Özlük Ö (2001) Facets of the \(p\)-cycle polytope. Discret Appl Math 112:147–178. Combinatorial Optimization Symposium, Selected Papers

Kaibel V, Stephan R (2007) On cardinality constrained cycle and path polytopes. http://arxiv.org/pdf/0710.3036v1.pdf

Kaibel V, Stephan R (2010) On cardinality constrained cycle and path polytopes. Math Program 123:371–394

Kidney Health Australia (2015). http://www.kidney.org.au/KidneyDisease/FastFactsonCKD/tabid/589/Default.aspx

Klimentova X, Alvelos F, Viana A (2014) A new branch-and-price approach for the kidney exchange problem. In: Murgante B et al (eds) Computational science and its applications–ICCSA 2014. Lecture notes in computer science, vol 8580. Springer, pp. 237–252

Mak V, Boland N (2000) Heuristic approaches to the asymmetric travelling salesman problem with replenishment arcs. Int Trans Oper Res 7:431–447

Mak V, Boland N (2006) Facets of the polytope of the asymmetric travelling salesman problem with replenishment arcs. Discret Optim 3:33–49

Mak V, Boland N (2007) Polyhedral results and exact algorithms for the asymmetric travelling salesman problem with replenishment arcs. Discret Appl Math 155:2093–2110

Mak-Hau V (2015) Polyhedral results for the cardinality constrained multi-cycle problem (CCMcP) and the cardinality constrained cycles and chains problem (CCCCP). http://www.deakin.edu.au/~vicky/TechnicalReport2.pdf

Manlove D, O’Malley G (2012) Paired and altruistic kidney donation in the UK: algorithms and experimentation. In: Klasing R (ed) Experimental algorithms. Lecture notes in computer science, vol 7276. Springer, Berlin, pp 271–282

Miller CE, Tucker AW, Zemlin RA (1960) Integer programming formulation of traveling salesman problems. J ACM 7:326–329

Nguyen VH, Maurras J (2001) On the linear description of the \(k\)-cycle polytope. Int Trans Oper Res 8:673–692

Patterson R, Rolland E (2003) The cardinality constrained covering traveling salesman problem. Comput Oper Res 30:97–116

Roth AE, Sünmez T, Ünver MU (2007) Efficient kidney exchange: coincidence of wants in markets with compatibility-based preferences. Am Econ Rev 97:828–851

Saidman SL, Roth AE, Sönmez T, Ünver MU, Delmonico FL (2006) Increasing the opportunity of live kidney donation by matching for two and three way exchanges. Transplantation 81:773–782

Toth P, Vigo D (2002) Models, relaxations and exact approaches for the capacitated vehicle routing problem. Discret Appl Math 123:487–512

Zenios SA, Chertow GM, Wein LM (2000) Dynamic allocation of kidneys to candidates on the transplant waiting list. Oper Res 48:549–569

## Acknowledgments

To “The \(\alpha \) and the \(\omega \)”.

## Author information

### Affiliations

### Corresponding author

## Rights and permissions

## About this article

### Cite this article

Mak-Hau, V. On the kidney exchange problem: cardinality constrained cycle and chain problems on directed graphs: a survey of integer programming approaches.
*J Comb Optim* **33, **35–59 (2017). https://doi.org/10.1007/s10878-015-9932-4

Published:

Issue Date:

### Keywords

- Kidney exchange
- Integer programming
- Combinatorial optimization
- Healthcare