Appendix
Proof of (10)
Lemma 6
We have
$$\begin{aligned} \sum _{k=1}^{n-m+1}\left( {\begin{array}{c}n-k-1\\ m-2\end{array}}\right) k\ln k\le \left( {\begin{array}{c}n\\ m\end{array}}\right) \left( H_{n}-H_{m}+1-\frac{m}{n}\right) . \end{aligned}$$
Proof
To prove the upper bound on \(\sum _{k=2}^{n-m+1}\left( {\begin{array}{c}n-k-1\\ m-2\end{array}}\right) k\lg k\), we use Abel’s identity Apostol (1976, Theorem 4.2), which states that for an arithmetic function a, a real number x, and a function f with a continuous derivative on \(\left[ 1,x\right] \), we have
$$\begin{aligned} \sum _{1\le k\le x}a\left( k\right) f\left( k\right) =A\left( x\right) f\left( x\right) -\int _{1}^{x}A\left( y\right) f'\left( y\right) dy, \end{aligned}$$
where \(A\left( y\right) =\sum _{1\le k\le y}a\left( k\right) \) for \(y\in {\mathbb {R}}\). To use Abel’s identity, we let \(a\left( k\right) =k\left( {\begin{array}{c}n-k-1\\ m-2\end{array}}\right) \) and \(f\left( k\right) =\ln k\). Hence,
$$\begin{aligned} A\left( y\right)&=\sum _{1\le k\le y}k\left( {\begin{array}{c}n-k-1\\ m-2\end{array}}\right) \\&=\left( {\begin{array}{c}n\\ m\end{array}}\right) -\frac{(\left\lfloor y\right\rfloor (m-1)+n)}{m}\left( {\begin{array}{c}n-\left\lfloor y\right\rfloor -1\\ m-1\end{array}}\right) , \end{aligned}$$
for \(y\ge 1\) and \(A\left( y\right) =0\) for \(y<1\). By Abel’s identity, we have
$$\begin{aligned} \sum _{k=1}^{n-m+1}\left( {\begin{array}{c}n-k-1\\ m-2\end{array}}\right) k\ln k=A(n-m+1)f(n-m+1)-\int _{y=1}^{n-m+1}A(y)f'(y)dy. \end{aligned}$$
The first term on the right side equals \(\left( {\begin{array}{c}n\\ m\end{array}}\right) \ln \left( n-m+1\right) \) and for the second term, we find
$$\begin{aligned}&\int _{y=1}^{n-m+1}A(y)f'(y)dy\\&\quad =\int _{y=1}^{n-m+1}\left( \left( {\begin{array}{c}n\\ m\end{array}}\right) -\frac{(\left\lfloor y\right\rfloor (m-1)+n)}{m}\left( {\begin{array}{c}n-\left\lfloor y\right\rfloor -1\\ m-1\end{array}}\right) \right) \frac{1}{y}dy\\&\quad =\left( {\begin{array}{c}n\\ m\end{array}}\right) \ln \left( n-m+1\right) -\int _{y=1}^{n-m+1} \frac{(\left\lfloor y\right\rfloor (m-1)+n)}{m}\left( {\begin{array}{c}n-\left\lfloor y\right\rfloor -1\\ m-1\end{array}}\right) \frac{1}{y}dy. \end{aligned}$$
Hence,
$$\begin{aligned} \sum _{k=1}^{n-m+1}\left( {\begin{array}{c}n-k-1\\ m-2\end{array}}\right) k\ln k=\int _{y=1}^{n-m+1}\frac{(\left\lfloor y\right\rfloor (m-1)+n)}{m}\left( {\begin{array}{c}n-\left\lfloor y\right\rfloor -1\\ m-1\end{array}}\right) \frac{1}{y}dy. \end{aligned}$$
We proceed as follows:
$$\begin{aligned}&\sum _{k=1}^{n-m+1} \left( {\begin{array}{c}n-k-1\\ m-2\end{array}}\right) k\ln k\\&\quad \le \int _{y=1}^{n-m+1}\frac{(\left\lfloor y\right\rfloor (m-1)+n)}{m}\left( {\begin{array}{c}n-\left\lfloor y\right\rfloor -1\\ m-1\end{array}}\right) \frac{1}{\left\lfloor y\right\rfloor }dy\\&\quad =\sum _{k=1}^{n-m}\frac{k(m-1)+n}{m}\left( {\begin{array}{c}n-k-1\\ m-1\end{array}}\right) \frac{1}{k}\\&\quad =\frac{m-1}{m}\sum _{k=1}^{n-m}\left( {\begin{array}{c}n-k-1\\ m-1\end{array}}\right) +\frac{n}{m}\sum _{k=1}^{n-m}\left( {\begin{array}{c}n-k-1\\ m-1\end{array}}\right) \frac{1}{k}\\&\quad =\frac{m-1}{m}\left( {\begin{array}{c}n-1\\ m\end{array}}\right) +\frac{n}{m}\left( {\begin{array}{c}n-1\\ m-1\end{array}}\right) \left( H_{n-1}-H_{m-1}\right) \\&\quad =\frac{m-1}{m}\left( {\begin{array}{c}n-1\\ m\end{array}}\right) +\left( {\begin{array}{c}n\\ m\end{array}}\right) \left( H_{n}-H_{m}\right) +\frac{1}{m}\left( {\begin{array}{c}n-1\\ m-1\end{array}}\right) \left( \frac{n-m}{m}\right) \\&\quad =\left( {\begin{array}{c}n-1\\ m\end{array}}\right) +\left( {\begin{array}{c}n\\ m\end{array}}\right) \left( H_{n}-H_{m}\right) = \left( {\begin{array}{c}n\\ m\end{array}}\right) \left( H_{n}-H_{m}+1-\frac{m}{n}\right) , \end{aligned}$$
where we have used the fact that for nonnegative integers \(\ell ,j\), we have
$$\begin{aligned} \sum _{i=1}^{\ell -j}\left( {\begin{array}{c}\ell -i\\ j\end{array}}\right) \frac{1}{i}= \left( {\begin{array}{c}\ell \\ j\end{array}}\right) \left( H_{\ell }-H_{j}\right) , \end{aligned}$$
proved below, to obtain the third equality.
To prove
$$\begin{aligned} \sum _{i=1}^{\ell -j}\left( {\begin{array}{c}\ell -i\\ j\end{array}}\right) \frac{1}{i}= \left( {\begin{array}{c}\ell \\ j\end{array}}\right) \left( H_{\ell }-H_{j}\right) \end{aligned}$$
let us write it as
$$\begin{aligned} \sum _{i=j+1}^{\ell }\frac{\left( \ell -i+j\right) !}{\left( \ell -i\right) !} \frac{1}{i-j}=\frac{\ell !}{\left( \ell -j\right) !}\sum _{i=j+1}^{\ell }\frac{1}{i}\cdot \end{aligned}$$
(19)
The proof is by induction. The equality (19) holds for \(j=0\) as both sides reduce to \(\sum _{i=1}^{\ell }\frac{1}{i}\). As induction hypothesis, suppose (19) holds for a certain value of j. We show that it also holds for \(j+1\). We have
$$\begin{aligned}&\sum _{i=j+2}^{\ell } \frac{\left( \ell -i+j+1\right) !}{\left( \ell -i\right) !}\frac{1}{i-j-1}\\&\quad =\sum _{i=j+1}^{\ell -1}\frac{\left( \ell -i+j\right) !}{\left( \ell -i-1 \right) !}\frac{1}{i-j}\\&\quad =\sum _{i=j+1}^{\ell }\frac{\left( \ell -i\right) \left( \ell -i+j \right) !}{\left( \ell -i\right) !}\frac{1}{i-j}\\&\quad =\sum _{i=j+1}^{\ell }\frac{\left( \ell -j\right) \left( \ell -i+j \right) !}{\left( \ell -i\right) !}\frac{1}{i-j}-\sum _{i=j+1}^{\ell } \frac{\left( i-j\right) \left( \ell -i+j\right) !}{\left( \ell -i\right) !}\frac{1}{i-j}\\&\quad =\left( \ell -j\right) \sum _{i=j+1}^{\ell }\frac{\left( \ell -i+j \right) !}{\left( \ell -i\right) !}\frac{1}{i-j}-\sum _{i=j+1}^{\ell } \frac{\left( \ell -i+j\right) !}{\left( \ell -i\right) !}\\&\quad \mathop {=}\limits ^{\mathsf {(a)}}\left( \ell -j\right) \frac{\ell !}{\left( \ell -j\right) !} \sum _{i=j+1}^{\ell }\frac{1}{i}-j!\sum _{i=j+1}^{\ell } \left( {\begin{array}{c}\ell -i+j\\ j\end{array}}\right) \\&\quad =\frac{\ell !}{\left( \ell -j-1\right) !}\sum _{i=j+1}^{\ell } \frac{1}{i}-j!\sum _{i=j}^{\ell -1}\left( {\begin{array}{c}i\\ j\end{array}}\right) \\&\quad =\frac{\ell !}{\left( \ell -j-1\right) !}\sum _{i=j+1}^{\ell } \frac{1}{i}-\frac{\ell !}{(j+1)\left( \ell -j-1\right) !}\\&\quad =\frac{\ell !}{\left( \ell -j-1\right) !}\sum _{i=j+2}^{\ell }\frac{1}{i}, \end{aligned}$$
where for \(\mathsf {(a)}\) we have used the induction hypothesis. \(\square \)
Proof of (14)
In this subsection, we prove (14) as follows
$$\begin{aligned}&P \left( D_{u,v}\left( X,Y_{1}''\right) \right) \\&\quad \mathop {=}\limits ^{\mathsf {(a)}}\frac{1}{t}\sum _{a=0}^{ \left\lfloor (3t-2)/4\right\rfloor }\frac{\left( {\begin{array}{c}a+2\\ 2\end{array}}\right) +\left( {\begin{array}{c}t-a+1\\ 2\end{array}}\right) }{2\left( {\begin{array}{c}t+2\\ 2\end{array}}\right) }+ \frac{1}{t}\sum _{a=\left\lfloor (3t-2)/4\right\rfloor +1}^{t-1}\frac{\left( {\begin{array}{c}a+2\\ 3\end{array}}\right) +\left( {\begin{array}{c}t+2\\ 3\end{array}}\right) -\left( {\begin{array}{c}t-a+2\\ 3\end{array}}\right) }{2a\left( {\begin{array}{c}t+2\\ 2\end{array}}\right) }\\&\quad =\frac{1}{t^{3}+O\left( t^{2}\right) }\biggl [\sum _{a=0}^{\left\lfloor (3t-2)/4\right\rfloor }\left( \left( {\begin{array}{c}a+2\\ 2\end{array}}\right) +\left( {\begin{array}{c}t-a+1\\ 2\end{array}}\right) \right) \\&\qquad +\, \sum _{a=\left\lfloor (3t-2)/4\right\rfloor +1}^{t-1}\frac{1}{a}\left( \left( {\begin{array}{c}a+2\\ 3\end{array}}\right) +\left( {\begin{array}{c}t+2\\ 3\end{array}}\right) -\left( {\begin{array}{c}t-a+2\\ 3\end{array}}\right) \right) \biggl ]\\&\quad =\frac{1}{t^{3}+O\left( t^{2}\right) }\biggl [\frac{\left( 3t/4 \right) ^{3}}{6}+\frac{t^{3}-\left( t/4\right) ^{3}}{6}+\frac{t^{3}-\left( 3t/4\right) ^{3}}{18}+O\left( t^{2}\right) \\&\qquad +\, \sum _{a=\left\lfloor (3t-2)/4\right\rfloor +1}^{t-1} \frac{t^{3}-\left( t-a\right) ^{3}+O\left( t^{2}\right) }{6a}\biggl ]\\&\quad =\frac{1}{1+O\left( t^{-1}\right) }\left( \frac{307}{1152}+\frac{1}{6} \sum _{\left\lfloor (3t-2)/4\right\rfloor +1}^{t-1}\left( \frac{3}{t} -\frac{3a}{t^{2}}+\frac{a^{2}}{t^{3}}+O\left( \frac{1}{at}\right) \right) \right) \\&\quad =\frac{1}{1+O\left( t^{-1}\right) }\left( \frac{307}{1152} +\frac{1}{6}\left( \frac{3}{4}-\frac{21}{32}+\frac{37}{192} +O\left( \frac{1}{t}\right) \right) \right) \\&\quad =\frac{181}{576}+o(1), \end{aligned}$$
where \(\mathsf {(a)}\) follows from (13) and where we have used \(\sum _{a=0}^{k+O\left( 1\right) }\left( {\begin{array}{c}a+O\left( 1\right) \\ 2\end{array}}\right) =\frac{k^{3}}{6}+O\left( k^{2}\right) \) and \(\frac{1}{a}\left( {\begin{array}{c}a+2\\ 3\end{array}}\right) =\frac{1}{3}\left( {\begin{array}{c}a+2\\ 2\end{array}}\right) \).