Power domination with bounded time constraints

Abstract

Based on the power observation rules, the problem of monitoring a power utility network can be transformed into the graph-theoretic power domination problem, which is an extension of the well-known domination problem. A set \(S\) is a power dominating set (PDS) of a graph \(G=(V,E)\) if every vertex \(v\) in \(V\) can be observed under the following two observation rules: (1) \(v\) is dominated by \(S\), i.e., \(v \in S\) or \(v\) has a neighbor in \(S\); and (2) one of \(v\)’s neighbors, say \(u\), and all of \(u\)’s neighbors, except \(v\), can be observed. The power domination problem involves finding a PDS with the minimum cardinality in a graph. Similar to message passing protocols, a PDS can be considered as a dominating set with propagation that applies the second rule iteratively. This study investigates a generalized power domination problem, which limits the number of propagation iterations to a given positive integer; that is, the second rule is applied synchronously with a bounded time constraint. To solve the problem in block graphs, we propose a linear time algorithm that uses a labeling approach. In addition, based on the concept of time constraints, we provide the first nontrivial lower bound for the power domination problem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aazami A, Stilp MD (2009) Approximation algorithms and hardness for domination with propagation. SIAM J Discret Math 23(3):1382–1399

    MathSciNet  Article  MATH  Google Scholar 

  2. Aazami A (2010) Domination in graphs with bounded propagation: algorithms, formulation and hardness results. J Comb Optim 19(4):429–456

    MathSciNet  Article  MATH  Google Scholar 

  3. Atkins D, Haynes TW, Henning MA (2006) Placing monitoring devices in electric power networks modeled by block graphs. Ars Combinatoria 79:129–143

    MathSciNet  MATH  Google Scholar 

  4. Baldwin TL, Mili L, Boisen MB Jr, Adapa R (1993) Power system observability with minimal phasor measurement placewement. IEEE Trans Power Syst 8(2):707–715

    Article  Google Scholar 

  5. Brueni DJ, Heath LS (2005) The PMU placement problem. SIAM J Discret Math 19(3):744–761

    MathSciNet  Article  MATH  Google Scholar 

  6. Chang GJ (1998) Algorithmic aspects of domination in graphs. In: Du D-Z , Pardalos PM (eds) Handbook of Combinatorial Optimization vol 3, pp 339–405

  7. Chang CL, Lyuu YD (2008) Spreading messages. In: Proceedings of the 14th international conference on computing and combinatorics. LNCS, vol 5092, pp 587–599

  8. Chang GJ, Dorbec P, Montassier M, Raspaud A (2012) Generalized power domination of graphs. Discret Appl Math 160:1691–1698

    MathSciNet  Article  MATH  Google Scholar 

  9. Chien Y-Y (2004) Power domination on graphs. Master thesis, Department Mathematics, National Taiwan University, Taiwan

  10. Dorbec P, Mollard M, Klavžar S, Špacapan S (2008) Power domination in product graphs. SIAM J Discret Math 22(2):554–567

    Article  MATH  Google Scholar 

  11. Dorbec P, Henning MA, Lowenstein C, Montassier M, Raspaud A (2013) Generalized power domination in regular graphs. SIAM J Discret Math 27(3):1559–1574

    MathSciNet  Article  MATH  Google Scholar 

  12. Dorfling M, Henning MA (2006) A note on power domination in grid graphs. Discret Appl Math 154(6):1023–1027

    MathSciNet  Article  MATH  Google Scholar 

  13. Feige U (1998) A threshold of ln \(n\) for approximating set cover. J ACM 45(4):634–652

    MathSciNet  Article  MATH  Google Scholar 

  14. Guo J, Niedermeier R, Raible D (2008) Improved algorithms and complexity results for power domination in graphs. Algorithmica 52(2):177–202

    MathSciNet  Article  MATH  Google Scholar 

  15. Haynes TW, Hedetniemi ST, Slater PJ (1998) Domination in graphs: the theory. Marcel Dekker Inc, New York

  16. Haynes TW, Hedetniemi ST, Slater PJ (1998) Domination in graphs: advanced topics. Marcel Dekker Inc, New York

  17. Haynes TW, Hedetniemi SM, Hedetniemi ST, Henning MA (2002) Domination in graphs applied to electric power networks. SIAM J Discret Math 15(4):519–529

    MathSciNet  Article  MATH  Google Scholar 

  18. Hedetniemi ST, Hedetniemi SM, Liestman AL (1988) A survey of broadcasting and gossiping in communication networks. Networks 18:319–349

    MathSciNet  Article  MATH  Google Scholar 

  19. Karp R, Schindelhauer C, Shenker S, Vocking B (2000) Randomized rumor spreading. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science. Foundations Computer Science (FOCS), pp 565–574

  20. Kneis J, Mölle D, Richter S, Rossmanith P (2006) Parameterized power domination complexity. Info Process Lett 98(4):145–149

    Article  MATH  Google Scholar 

  21. Liao C-S, Lee DT (2011) Power domination in circular-arc graphs. Algorithmica 65(2):443-466

  22. Liao C-S (2009) Graph-theoretic domination and related problems with applications. Doctoral thesis, Dept Computer Science and Information Engineering, National Taiwan University, Taiwan

  23. Liao C-S, Lee DT (2005) Power domination problem in graphs. In: Proceedings of the 11th annual international conference on computing and combinatorics. LNCS, vol 3595, pp 818–828

  24. Manousakis NM, Korres GN, Georgilakis PS (2012) Taxonomy of PMU placement methodologies. IEEE Trans Power Syst 27(2):1070–1077

    Article  Google Scholar 

  25. Mili L, Baldwin TL, Phadke AG (1991) Phasor measurements for voltage and transient stability monitoring and control. In: Proceedings of the EPRI-NSF workshop on application of advanced mathematics to power system

  26. Monticelli A (2000) Electric power system state estimation. Proc IEEE 88(2):262–282

    Article  Google Scholar 

  27. Nuqui RF, Phadke AG (2005) Phasor measurement unit placement techniques for complete and incomplete observability. IEEE Trans Power Delivery 20(4):2381–2388

    Article  Google Scholar 

  28. Phadke AG (2002) Synchronized phasor measurements—a historical overview. In: Proceedings of the transmission and distribution conference and exhibition, pp 476–479

  29. Raible D, Fernau H (2012) An exact exponential time algorithm for power dominating set. Algorithmica 63(1–2):323–346

    MathSciNet  Article  MATH  Google Scholar 

  30. Xu G, Kang L, Shan E, Zhao M (2006) Power domination in block graphs. Theoret Comput Sci 359:299–305

    MathSciNet  Article  MATH  Google Scholar 

  31. Xu G, Kang L (2011) On the power domination number of the generalized Petersen graphs. J Comb Optim 22:282–291

    MathSciNet  Article  MATH  Google Scholar 

  32. Xu B, Yoon YJ, Abur A (2005) Optimal placement and utilization of phasor measurements for state estimation. In Proceedings of the power system computation conference

  33. Zhao M, Kang L, Chang GJ (2006) Power domination in graphs. Discret Math 306(15):1812–1816

    MathSciNet  Article  MATH  Google Scholar 

  34. Zhao M, Kang L (2007) Power domination in planar graphs with small diameter. J Shanghai Univ 11(3):218–222

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

We wish to thank the anonymous reviewers for valuable comments, which helped us improve the quality of the presentation of the paper. This work was supported by the National Science Council of Taiwan under Grants NSC100-2221-E-007-108-MY3, NSC102-2221-E-007-075-MY3 and NSC100-3113-P-002-012

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chung-Shou Liao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, CS. Power domination with bounded time constraints. J Comb Optim 31, 725–742 (2016). https://doi.org/10.1007/s10878-014-9785-2

Download citation

Keywords

  • Algorithm
  • Domination
  • Power domination
  • Time constraint