Skip to main content
Log in

Parameterized complexity of k-anonymity: hardness and tractability

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The problem of publishing personal data without giving up privacy is becoming increasingly important. A precise formalization that has been recently proposed is the k-anonymity, where the rows of a table are partitioned into clusters of sizes at least k and all rows in a cluster become the same tuple after the suppression of some entries. The natural optimization problem, where the goal is to minimize the number of suppressed entries, is hard even when the stored values are over a binary alphabet or the table consists of a bounded number of columns. In this paper we study how the complexity of the problem is influenced by different parameters. First we show that the problem is W[1]-hard when parameterized by the value of the solution (and k). Then we exhibit a fixed-parameter algorithm when the problem is parameterized by the number of columns and the number of different values in any column. Finally, we prove that k-anonymity is still APX-hard even when restricting to instances with 3 columns and k=3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal G, Feder T, Kenthapadi K, Motwani R, Panigrahy R, Thomas D, Zhu A (2005) Anonymizing tables. In: Eiter T, Libkin L (eds) ICDT. Lecture Notes in Computer Science, vol 3363. Springer, Berlin, pp 246–258

    Google Scholar 

  • Aggarwal G, Kenthapadi K, Motwani R, Panigrahy R, Thomas D, Zhu A (2005) Approximation algorithms for k-anonymity. J Priv Technol

  • Aggarwal G, Panigrahy R, Feder T, Thomas D, Kenthapadi K, Khuller S, Zhu A (2010) Achieving anonymity via clustering. ACM Trans Algorithms 6(3)

  • Alimonti P, Kann V (2000) Some APX-completeness results for cubic graphs. Theor Comput Sci 237(1–2):123–134

    Article  MathSciNet  MATH  Google Scholar 

  • Alt H, Blum N, Mehlhorn K, Paul M (1991) Computing a maximum cardinality matching in a bipartite graph in time \(o(n^{1}0.5 \sqrt{m}/\log n)\). Inf Process Lett 37(4):237–240

    Article  MathSciNet  MATH  Google Scholar 

  • Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M (1999) Complexity and approximation: combinatorial optimization problems and their approximability properties. Springer, Berlin

    MATH  Google Scholar 

  • Blocki J, Williams R (2010) Resolving the complexity of some data privacy problems. In: Abramsky S, Gavoille C, Kirchner C, auf der Heide FM, Spirakis PG (eds) Automata, languages and programming. 37th international colloquium, ICALP 2010, Proceedings of Part II, Bordeaux, France, July 6–10, 2010, LNCS, vol 6199. Springer, Berlin, pp 393–404

    Google Scholar 

  • Bonizzoni P, Della Vedova G, Dondi R (2011) Anonymizing binary and small tables is hard to approximate. J Comb Optim 22(1):97–119

    Article  MathSciNet  MATH  Google Scholar 

  • Diestel R (2005) Graph theory. Graduate texts in mathematics, vol 173, 3rd edn. Springer, Heidelberg

    MATH  Google Scholar 

  • Downey RG, Fellows MR (1995) Fixed-parameter tractability and completeness ii: on completeness for W[1]. Theor Comput Sci 141(1&2):109–131

    Article  MathSciNet  MATH  Google Scholar 

  • Downey R, Fellows M (1999) Parameterized complexity. Springer, Berlin

    Book  Google Scholar 

  • Du W, Eppstein D, Goodrich MT, Lueker GS (2009) On the approximability of geometric and geographic generalization and the min-max bin covering problem. In: Dehne FKHA, Gavrilova ML, Sack JR, Tóth CD (eds) WADS. Lecture notes in computer science, vol 5664. Springer, Berlin, pp 242–253

    Google Scholar 

  • Evans PA, Wareham T, Chaytor R (2009) Fixed-parameter tractability of anonymizing data by suppressing entries. J Comb Optim 18(4):362–375

    Article  MathSciNet  MATH  Google Scholar 

  • Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml

  • Gionis A, Tassa T (2009) k-anonymization with minimal loss of information. IEEE Trans Knowl Data Eng 21(2):206–219

    Article  Google Scholar 

  • Meyerson A, Williams R (2004) On the complexity of optimal k-anonymity. In: Deutsch A (ed) PODS. ACM, New York, pp 223–228

    Chapter  Google Scholar 

  • Niedermeier R (2006) Invitation to fixed-parameter algorithms. Oxford University Press, London

    Book  MATH  Google Scholar 

  • Park H, Shim K (2010) Approximate algorithms with generalizing attribute values for k-anonymity. Inf Syst 35(8):933–955

    Article  Google Scholar 

  • Samarati P (2001) Protecting respondents’ identities in microdata release. IEEE Trans Knowl Data Eng 13(6):1010–1027

    Article  Google Scholar 

  • Samarati P, Sweeney L (1998) Generalizing data to provide anonymity when disclosing information (abstract). In: PODS. ACM, New York, p 188

    Google Scholar 

  • Sweeney L (2002) k-anonymity: a model for protecting privacy. Int J Uncertain Fuzziness Knowl-Based Syst 10(5):557–570

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Della Vedova.

Additional information

A preliminary version of this paper appeared in the proceedings of IWOCA 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonizzoni, P., Della Vedova, G., Dondi, R. et al. Parameterized complexity of k-anonymity: hardness and tractability. J Comb Optim 26, 19–43 (2013). https://doi.org/10.1007/s10878-011-9428-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-011-9428-9

Keywords

Navigation