Skip to main content
Log in

Min-cost multiflows in node-capacitated undirected networks

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We consider an undirected graph G=(VG,EG) with a set TVG of terminals, and with nonnegative integer capacities c(v) and costs a(v) of nodes vVG. A path in G is a T-path if its ends are distinct terminals. By a multiflow we mean a function F assigning to each T-path P a nonnegative rational weight F(P), and a multiflow is called feasible if the sum of weights of T-paths through each node v does not exceed c(v). The value of F is the sum of weights F(P), and the cost of F is the sum of F(P) times the cost of P w.r.t. a, over all T-paths P.

Generalizing known results on edge-capacitated multiflows, we show that the problem of finding a minimum cost multiflow among the feasible multiflows of maximum possible value admits half-integer optimal primal and dual solutions. Moreover, we devise a strongly polynomial algorithm for finding such optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babenko MA, Karzanov AV (2007) Free multiflows in bidirected and skew-symmetric graphs. Discrete Appl Math 155(13):1715–1730

    Article  MathSciNet  MATH  Google Scholar 

  • Cherkassky BV (1977) A solution of a problem on multicommodity flows in a network. Ekon Mat Metody 13(1):143–151 (in Russian)

    Google Scholar 

  • Edmonds J, Giles R (1977) A min–max relation for submodular functions on graphs. Ann Discrete Math 1:185–204

    Article  MathSciNet  Google Scholar 

  • Edmonds J, Johnson EL (1970) Matching: a well-solved class of integer linear programs. In: Guy R, Hanani H, Sauer N, Schönhein J (eds) Combinatorial structures and their applications. Gordon and Breach, New York, pp 89–92

    Google Scholar 

  • Ford L, Fulkerson D (1962) Flows in networks. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Goldberg AV, Karzanov AV (1996) Path problems in skew-symmetric graphs. Combinatorica 16(3):353–382

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg AV, Karzanov AV (1997) Scaling methods for finding a maximum free multiflow of minimum cost. Math Oper Res 22(1):90–109

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg AV, Karzanov AV (2004) Maximum skew-symmetric flows and matchings. Math Program 100(3):537–568

    Article  MathSciNet  MATH  Google Scholar 

  • Ibaraki T, Karzanov AV, Nagamochi H (1998) A fast algorithm for finding a maximum free multiflow in an inner Eulerian network and some generalizations. Combinatorica 18(1):61–83

    Article  MathSciNet  MATH  Google Scholar 

  • Karzanov AV (1979) A problem on maximum multiflow of minimum cost. In: Combinatorial methods for flow problems. Inst for System Studies Press, Moscow, pp 138–156, issue 3 (in Russian)

    Google Scholar 

  • Karzanov AV (1989) Polyhedra related to undirected multicommodity flows. Linear Algebra Appl 114/115:293–328

    Article  MathSciNet  Google Scholar 

  • Karzanov AV (1994) Minimum cost multiflows in undirected networks. Math Program 66(3):313–325

    Article  MathSciNet  MATH  Google Scholar 

  • Lawler EL (1976) Combinatorial optimization: networks and matroids. Holt, Reinhart, and Winston, New York

    MATH  Google Scholar 

  • Lovász L (1976) On some connectivity properties of Eulerian graphs. Acta Math Acad Sci Hung 28:129–138

    Article  MATH  Google Scholar 

  • Pap G (2007) Some new results on node-capacitated packing of a-paths. In: STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. ACM, New York, pp 599–604

    Chapter  Google Scholar 

  • Schrijver A (2003) Combinatorial optimization. Springer, Berlin

    MATH  Google Scholar 

  • Tutte WT (1967) Antisymmetrical digraphs. Can J Math 19:1101–1117

    Article  MathSciNet  MATH  Google Scholar 

  • Vazirani V (2001) Approximation algorithms. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim A. Babenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, M.A., Karzanov, A.V. Min-cost multiflows in node-capacitated undirected networks. J Comb Optim 24, 202–228 (2012). https://doi.org/10.1007/s10878-011-9377-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-011-9377-3

Keywords

Navigation