Skip to main content
Log in

A fast exact algorithm for the problem of optimum cooperation and the structure of its solutions

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Given a graph G=(V,E) with edge weights w e ∈ℝ, the optimum cooperation problem consists in determining a partition of the graph that maximizes the sum of weights of the edges with nodes in the same class plus the number of the classes of the partition. The problem is also known in the literature as the optimum attack problem in networks. Furthermore, a relevant physics application exists.

In this work, we present a fast exact algorithm for the optimum cooperation problem. Algorithms known in the literature require |V|−1 minimum cut computations in a corresponding network. By theoretical considerations and appropriately designed heuristics, we considerably reduce the numbers of minimum cut computations that are necessary in practice. We show the effectiveness of our method by presenting results on instances coming from the physics application. Furthermore, we analyze the structure of the optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anglès d’Auriac JC, Iglói F, Preissmann M, Sebő A (2002) Optimal cooperation and submodularity for computing Potts’ partition functions with a large number of states. J Phys A, Math Gen 35:6973–6983

    Article  MATH  Google Scholar 

  • Baïou M, Barahona F, Mahjoub R (2000) Separation of partition inequalities. Math Operat Res 25(2):243–254

    Article  MATH  Google Scholar 

  • Barahona F (1992) Separating from the dominant of the spanning tree polytope. Oper Res Lett 12:201–203

    Article  MATH  MathSciNet  Google Scholar 

  • Cunningham WH (1985) Optimal attack and reinforcement of a network. J Assoc Comput Mach 32(3):549–561

    MATH  MathSciNet  Google Scholar 

  • Dempe S, Schreier H (2006) Operations Research—Deterministische Modelle und Methoden. Teubner, Wiesbaden

    MATH  Google Scholar 

  • Fujishige S (2005) Submodular functions and optimization. Annals of discrete mathematics, vol 58. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Goldberg AV, Tarjan RE (1988) A new approach to the maximum-flow problem. J ACM 35(4):921–940

    Article  MATH  MathSciNet  Google Scholar 

  • Grätzer G (1978) General lattice theory. Birkhäuser, Basel

    Google Scholar 

  • Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2):169–197

    Article  MATH  MathSciNet  Google Scholar 

  • Grötschel M, Lovász L, Schrijver A (1988) Geometric algorithms and combinatorial optimization. Springer, Berlin

    MATH  Google Scholar 

  • Hartmann AK, Rieger H (2002) Optimization algorithms in physics. Wiley-VHC, Berlin

    MATH  Google Scholar 

  • Hartmann AK, Rieger H (2004) New optimization algorithms in physics. Wiley-VHC, Berlin

    Book  MATH  Google Scholar 

  • Iwata S, Fleischer L, Fujishige S (2001) A combinatorial strongly polynomial algorithm for minimizing submodular functions. J ACM 48(4):761–777

    Article  MATH  MathSciNet  Google Scholar 

  • Juhasz R, Rieger H, Iglói F (2001) The random-bond Potts model in the large-q limit. Phys Rev E 64:056122

    Article  Google Scholar 

  • Jünger M, Rinaldi G, Thienel S (2000) Practical performance of efficient minimum cut algorithms. Algorithmica 26:172–195

    Article  MATH  MathSciNet  Google Scholar 

  • McCormick ST (2005) Submodular function minimization. In: Aardal K et al. (eds) Discrete optimization. Handbooks in operations research and management science, vol 12. Elsevier, Amsterdam, pp 321–391

    Chapter  Google Scholar 

  • Open Graph Drawing Framework (2007). www.ogdf.net

  • Preissmann M, Sebő A (2009) Graphic submodular function minimization: a graphic approach and applications. In: Cook W, Lovász L, Vygen J (eds) Research trends in combinatorial optimization. Springer, Berlin, pp 365–386

    Chapter  Google Scholar 

  • Schrijver A (2000) A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J Comb Theory B 80:346–355

    Article  MATH  MathSciNet  Google Scholar 

  • Topkis DM (1998) Supermodularity and complementarity. Princeton University Press, Princeton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Fanghänel.

Additional information

This work is supported by the German Science Foundation under contract Li 1675/1. Partially supported by the Marie Curie RTN Adonet 504438 funded by the EU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanghänel, D., Liers, F. A fast exact algorithm for the problem of optimum cooperation and the structure of its solutions. J Comb Optim 19, 369–393 (2010). https://doi.org/10.1007/s10878-009-9208-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-009-9208-y

Keywords

Navigation