Skip to main content

Advertisement

Log in

Arterial blood pressure waveform in liver transplant surgery possesses variability of morphology reflecting recipients’ acuity and predicting short term outcomes

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

We investigated clinical information underneath the beat-to-beat fluctuation of the arterial blood pressure (ABP) waveform morphology. We proposed the Dynamical Diffusion Map algorithm (DDMap) to quantify the variability of morphology.  The underlying physiology could be the compensatory mechanisms involving complex interactions between various physiological mechanisms to regulate the cardiovascular system. As a liver transplant surgery contains distinct periods, we investigated its clinical behavior in different surgical steps. Our study used DDmap algorithm, based on unsupervised manifold learning, to obtain a quantitative index for the beat-to-beat variability of morphology. We examined the correlation between the variability of ABP morphology and disease acuity as indicated by Model for End-Stage Liver Disease (MELD) scores, the postoperative laboratory data, and 4 early allograft failure (EAF) scores. Among the 85 enrolled patients, the variability of morphology obtained during the presurgical phase was best correlated with MELD-Na scores. The neohepatic phase variability of morphology was associated with EAF scores as well as postoperative bilirubin levels, international normalized ratio, aspartate aminotransferase levels, and platelet count. Furthermore, variability of morphology presents more associations with the above clinical conditions than the common BP measures and their BP variability indices. The variability of morphology obtained during the presurgical phase is indicative of patient acuity, whereas those during the neohepatic phase are indicative of short-term surgical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parati G, Stergiou GS, Dolan E, Bilo G. Blood pressure variability: clinical relevance and application. J Clin Hypertens (Greenwich). 2018;20(7):1133–7.

    Article  PubMed  Google Scholar 

  2. Palatini P, Reboldi G, Beilin LJ, Casiglia E, Eguchi K, Imai Y, Kario K, Ohkubo T, Pierdomenico SD, Schwartz JE, et al. Added predictive value of night-time blood pressure variability for cardiovascular events and mortality: the ambulatory blood pressure-international study. Hypertension. 2014;64(3):487–93.

    Article  CAS  PubMed  Google Scholar 

  3. Louissaint J, Fortune BE. Blood pressure variability in liver transplant recipients: the who, what, when, and how. Liver Transpl. 2022;28(4):549–51.

    Article  PubMed  Google Scholar 

  4. Sluyter JD, Hughes AD, Camargo CA Jr, Thom SAM, Parker KH, Hametner B, Wassertheurer S, Scragg R. Identification of distinct arterial waveform clusters and a longitudinal evaluation of their clinical usefulness. Hypertension. 2019;74(4):921–8.

    Article  CAS  PubMed  Google Scholar 

  5. Chen C-H, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, Kass DA. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function. Circulation. 1997;95(7):1827–36.

    Article  CAS  PubMed  Google Scholar 

  6. Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, Rinehart J, Cannesson M. Machine-learning algorithm to Predict Hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018;129(4):663–74.

    Article  PubMed  Google Scholar 

  7. Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD, Roman MJ, Safar ME, Segers P, Smulyan H. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension. 2009;54(2):375–83.

    Article  CAS  PubMed  Google Scholar 

  8. Schutte AE, Kollias A, Stergiou GS. Blood pressure and its variability: classic and novel measurement techniques. Nat Rev Cardiol. 2022;19(10):643–54.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang S-C, Wu H-T, Huang P-H, Chang C-H, Ting C-K, Lin Y-T. Novel imaging revealing inner dynamics for cardiovascular waveform analysis via unsupervised manifold learning. Anesth Analgesia. 2020;130(5):1244–54.

    Article  Google Scholar 

  10. Lin Y-T, Malik J, Wu H-T. Wave-shape oscillatory model for nonstationary periodic time series analysis. Found Data Sci. 2021;3(2):99–131.

    Article  Google Scholar 

  11. Shen C, Lin Y-T, Wu H-T. Robust and scalable manifold learning via landmark diffusion for long-term medical signal processing. J Mach Learn Res. 2022;23(86):1–30.

    Google Scholar 

  12. Pinsky MR. Complexity modeling: identify instability early. Crit Care Med. 2010;38(10 Suppl):649–55.

    Article  Google Scholar 

  13. Lin Y-T, Wu H-T, Wang S-C, Ting C-K, Liu C, Lin N-C, Chen C-Y, Loong C-C. Intraoperative arterial pressure waveforms shows temporal structure complexity correlated with acuity of liver transplant by pulse wave manifold learning analysis. In: Society for Technology in Anesthesia, Virtual Annual Meeting, 2021. Online; 2021.

  14. Moller S, Bernardi M. Interactions of the heart and the liver. Eur Heart J. 2013;34(36):2804–11.

    Article  PubMed  Google Scholar 

  15. Olthoff KM, Kulik L, Samstein B, Kaminski M, Abecassis M, Emond J, Shaked A, Christie JD. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl. 2010;16(8):943–9.

    Article  PubMed  Google Scholar 

  16. Brown RS Jr, Kumar KS, Russo MW, Kinkhabwala M, Rudow DL, Harren P, Lobritto S, Emond JC. Model for end-stage liver disease and child-turcotte-pugh score as predictors of pretransplantation disease severity, posttransplantation outcome, and resource utilization in United Network for Organ sharing status 2A patients. Liver Transpl. 2002;8(3):278–84.

    Article  PubMed  Google Scholar 

  17. Kim WR, Biggins SW, Kremers WK, Wiesner RH, Kamath PS, Benson JT, Edwards E, Therneau TM. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359(10):1018–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biggins SW, Kim WR, Terrault NA, Saab S, Balan V, Schiano T, Benson J, Therneau T, Kremers W, Wiesner R, et al. Evidence-based incorporation of serum sodium concentration into MELD. Gastroenterology. 2006;130(6):1652–60.

    Article  PubMed  Google Scholar 

  19. Leise MD, Kim WR, Kremers WK, Larson JJ, Benson JT, Therneau TM. A revised model for end-stage liver disease optimizes prediction of mortality among patients awaiting liver transplantation. Gastroenterology. 2011;140(7):1952–60.

    Article  PubMed  Google Scholar 

  20. Kamath PS, Kim WR. The model for end-stage liver disease (MELD). Hepatology. 2007;45(3):797–805.

    Article  PubMed  Google Scholar 

  21. Lin YP, Chen J, Lee WC, Chiang YJ, Huang CW. Understanding family dynamics in adult-to‐adult living donor liver transplantation decision‐making in Taiwan: motivation, communication, and ambivalence. Am J Transplant. 2021;21(3):1068–79.

    Article  PubMed  Google Scholar 

  22. Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, D’Amico G, Dickson ER, Kim WR. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33(2):464–70.

    Article  CAS  PubMed  Google Scholar 

  23. Pareja E, Cortes M, Hervás D, Mir J, Valdivieso A, Castell JV, Lahoz A. A score model for the continuous grading of early allograft dysfunction severity. Liver Transpl. 2015;21(1):38–46.

    Article  PubMed  Google Scholar 

  24. Avolio AW, Franco A, Schlegel A, Lai Q, Meli S, Burra P, Patrono D, Ravaioli M, Bassi D, Ferla F. Development and validation of a comprehensive model to estimate early allograft failure among patients requiring early liver retransplant. JAMA Surg. 2020;155(12):e204095–5.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Agopian VG, Markovic D, Klintmalm GB, Saracino G, Chapman WC, Vachharajani N, Florman SS, Tabrizian P, Haydel B, Nasralla D. Multicenter validation of the liver graft assessment following transplantation (L-GrAFT) score for assessment of early allograft dysfunction. J Hepatol. 2021;74(4):881–92.

    Article  PubMed  Google Scholar 

  26. Agopian VG, Harlander-Locke MP, Markovic D, Dumronggittigule W, Xia V, Kaldas FM, Zarrinpar A, Yersiz H, Farmer DG, Hiatt JR. Evaluation of early allograft function using the liver graft assessment following transplantation risk score model. JAMA Surg. 2018;153(5):436–44.

    Article  PubMed  Google Scholar 

  27. Mena L, Pintos S, Queipo NV, Aizpurua JA, Maestre G, Sulbaran T. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005;23(3):505–11.

    Article  CAS  PubMed  Google Scholar 

  28. Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers E-J, Berk R, Bollen KA, Brembs B, Brown L, Camerer C. Redefine statistical significance. Nat Hum Behav. 2018;2(1):6–10.

    Article  PubMed  Google Scholar 

  29. Rana A, Hardy M, Halazun K, Woodland D, Ratner L, Samstein B, Guarrera J, Brown R Jr, Emond J. Survival outcomes following liver transplantation (SOFT) score: a novel method to predict patient survival following liver transplantation. Am J Transplant. 2008;8(12):2537–46.

    Article  CAS  PubMed  Google Scholar 

  30. Marubashi S, Dono K, Nagano H, Asaoka T, Hama N, Kobayashi S, Miyamoto A, Takeda Y, Umeshita K, Monden M. Postoperative hyperbilirubinemia and graft outcome in living Donor Liver Transplantation. Liver Transpl: Off Publ Am Assoc Study of Liver Dis Int Liver Transpl Soc. 2007;13(11):1538–44.

    Article  Google Scholar 

  31. Lesurtel M, Raptis DA, Melloul E, Schlegel A, Oberkofler C, El-Badry AM, Weber A, Mueller N, Dutkowski P, Clavien PA. Low platelet counts after liver transplantation predict early posttransplant survival: the 60‐5 criterion. Liver Transpl. 2014;20(2):147–55.

    Article  PubMed  Google Scholar 

  32. Takahashi K, Nagai S, Putchakayala KG, Safwan M, Li AY, Kane WJ, Singh PL, Collins KM, Rizzari MD, Yoshida A. Prognostic impact of postoperative low platelet count after liver transplantation. Clin Transplant. 2017;31(3):e12891.

    Article  Google Scholar 

  33. Elsayed F, Sholkamy A, Elshazli M, Elshafie M, Naguib M. Comparison of different scoring systems in predicting short-term mortality after liver transplantation. In: Transplantation proceedings: 2015: Elsevier pp. 1207–1210.

  34. Stergiou GS, Parati G, Vlachopoulos C, Achimastos A, Andreadis E, Asmar R, Avolio A, Benetos A, Bilo G, Boubouchairopoulou N. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions–position statement of the European society of hypertension working group on blood pressure monitoring and cardiovascular variability. J Hypertens. 2016;34(9):1665–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Alfonso Avolio (UCSC, Italy) for kindly providing the details related to the calculation of EASE scores. We also thank Professor Vatche G. Agopian (UCLA, US) for providing details pertaining to the calculations of L-GrAFT scores.

Funding

The work was supported by the National Science and Technology Development Fund (MOST 109-2115-M-075 -001) of the Ministry of Science and Technology, Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

S-CW and Y-TL: proposed the concept of this study. S-CW, C-YC, CL, N-CL, C-CL and Y-TL: collected the clinical data. H-TW and Y-TL: analyzed the arterial blood waveform data. S-CW, Y-TL and H-TW: wrote the main manuscipt text. Y-TL: prepared Figs. 1, 2, 3, 4 and 5. C-YC: prepared Table 1. C-KT and C-YC: helped construct the manuscript.

Corresponding authors

Correspondence to Hau-Tieng Wu or Yu-Ting Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 932.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SC., Ting, CK., Chen, CY. et al. Arterial blood pressure waveform in liver transplant surgery possesses variability of morphology reflecting recipients’ acuity and predicting short term outcomes. J Clin Monit Comput 37, 1521–1531 (2023). https://doi.org/10.1007/s10877-023-01047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-023-01047-9

Keywords

Navigation