The effect of prolonged steep head-down laparoscopy on the optical nerve sheath diameter


Both the steep head-down position and pneumoperitoneum increase the intracranial pressure (ICP), and their combination for a prolonged period during laparoscopic radical prostatectomy (LRP) might influence the central nervous system homeostasis. Changes in optic nerve sheath diameter (ONSD) may reflect those in ICP. This study aims to quantify the change in ONSD in response to peritoneal CO2 insufflation and steep Trendelenburg position during LRP. ONSD was measured by ultrasound in 20 patients undergoing LRP and ten awake healthy volunteers. In patients, ONSD was assessed at baseline immediately after induction of general anesthesia in supine position, 10 and 60 min from baseline in a 25° head-down position during pneumoperitoneum, and after deflation of pneumoperitoneum with the patient supine at 0° angle. ONSD in controls was assessed at baseline with the patient lying supine, after 10 and 60 min of 25° head-down position, and 10 min after repositioning at 0° angle. ONSD increased significantly in both patients and controls (p < 0.0001) without between-group differences. The mean increase was 10.3% (95% CI 7.7–12.9%) in patients versus 7.5% (95% CI 2.5–12.6%) in controls (p = 0.28), and didn’t affect the time to recovery from anesthesia. In the studied patients, with a limited increase of end-tidal CO2 and airway pressure, and low volume fluid infusion, the maximal ONSD was always below the cut-off value suspect for increased ICP. ONSD reflects the changes in hydrostatic pressure in response to steep Trendelenburg position, and its increase might be minimized by careful handling of general anesthesia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Hu JC, Gu X, Lipsitz SR, Barry MJ, D’Amico AV, Weinberg AC, Keating NL. Comparative effectiveness of minimally invasive vs open radical prostatectomy. JAMA. 2009;302(14):1557–64.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Ficarra V, Novara G, Artibani W, Cestari A, Galfano A, Graefen M, Guazzoni G, Guillonneau B, Menon M, Montorsi F, Patel V, Rassweiler J, Van Poppel H. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol. 2009;55(5):1037–63.

    Article  PubMed  Google Scholar 

  3. 3.

    Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg. 1997;87(1):34–40.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Newman WD, Hollman AS, Dutton GN, Carachi R. Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol. 2002;86(10):1109–13.

    CAS  Article  Google Scholar 

  5. 5.

    Blaivas M, Theodoro D, Sierzenski PR. Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med. 2003;10(4):376–81.

    Article  Google Scholar 

  6. 6.

    Jimenez Restrepo JN, Leon OJ, Quevedo Florez LA. Ocular ultrasonography: a useful instrument in patients with trauma brain injury in emergency service. Emerg Med Int. 2019;1:1.

    Article  Google Scholar 

  7. 7.

    Girisgin AS, Kalkan E, Kocak S, Cander B, Gul M, Semiz M. The role of optic nerve ultrasonography in the diagnosis of elevated intracranial pressure. Emerg Med J. 2007;24(4):251–4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol. 1993;116(5):548–56.

    CAS  Article  Google Scholar 

  9. 9.

    Amini A, Kariman H, Arhami Dolatabadi A, Hatamabadi HR, Derakhshanfar H, Mansouri B, Safari S, Eqtesadi R. Use of the sonographic diameter of optic nerve sheath to estimate intracranial pressure. Am J Emerg Med. 2013;31(1):236–9.

    Article  PubMed  Google Scholar 

  10. 10.

    Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med. 2007;49(4):508–14.

    Article  PubMed  Google Scholar 

  11. 11.

    Halverson A, Buchanan R, Jacobs L, Shayani V, Hunt T, Riedel C, Sackier J. Evaluation of mechanism of increased intracranial pressure with insufflation. Surg Endosc. 1998;12(3):266–9.

    CAS  Article  Google Scholar 

  12. 12.

    Lovell AT, Marshall AC, Elwell CE, Smith M, Goldstone JC. Changes in cerebral blood volume with changes in position in awake and anesthetized subjects. Anesth Analg. 2000;90(2):372–6.

    CAS  PubMed  Google Scholar 

  13. 13.

    Raimondi F, Colombo R, Costantini E, Marchi A, Corona A, Fossali T, Borghi B, Figini S, Guzzetti S, Porta A. Effects of laparoscopic radical prostatectomy on intraoperative autonomic nervous system control of hemodynamics. Minerva Anestesiol. 2017;83(12):1265–73.

    Article  PubMed  Google Scholar 

  14. 14.

    Park EY, Koo BN, Min KT, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009;53(7):895–9.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Chen K, Wang L, Wang Q, Liu X, Lu Y, Li Y, Wong GTC. Effects of pneumoperitoneum and steep Trendelenburg position on cerebral hemodynamics during robotic-assisted laparoscopic radical prostatectomy: a randomized controlled study. Medicine. 2019;98(21):e15794.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Awad H, Santilli S, Ohr M, Roth A, Yan W, Fernandez S, Roth S, Patel V. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg. 2009;109(2):473–8.

    Article  PubMed  Google Scholar 

  17. 17.

    Roth S, Moss HE. Update on perioperative ischemic optic neuropathy associated with non-ophthalmic surgery. Front Neurol. 2018;9:557.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Weber ED, Colyer MH, Lesser RL, Subramanian PS. Posterior ischemic optic neuropathy after minimally invasive prostatectomy. J Neuro-phthalmol. 2007;27(4):285–7.

    Article  Google Scholar 

  19. 19.

    Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):1059–68.

    Article  PubMed  Google Scholar 

  20. 20.

    Robba C, Bacigaluppi S, Cardim D, Donnelly J, Sekhon MS, Aries MJ, Mancardi G, Booth A, Bragazzi NL, Czosnyka M, Matta B. Intraoperative non invasive intracranial pressure monitoring during pneumoperitoneum: a case report and a review of the published cases and case report series. J Clin Monit Comput. 2016;30(5):527–38.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Soldatos T, Chatzimichail K, Papathanasiou M, Gouliamos A. Optic nerve sonography: a new window for the non-invasive evaluation of intracranial pressure in brain injury. Emerg Med J. 2009;26(9):630–4.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Romagnuolo L, Tayal V, Tomaszewski C, Saunders T, Norton HJ. Optic nerve sheath diameter does not change with patient position. Am J Emerg Med. 2005;23(5):686–8.

    Article  PubMed  Google Scholar 

  23. 23.

    Ballantyne SA, O’Neill G, Hamilton R, Hollman AS. Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound. 2002;15(3):145–9.

    CAS  Article  Google Scholar 

  24. 24.

    Moretti R, Pizzi B. Ultrasonography of the optic nerve in neurocritically ill patients. Acta Anaesthesiol Scand. 2011;55(6):644–52.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Soliman I, Johnson G, Gillman LM, Zeiler FA, Faqihi F, Aletreby WT, Balhamar A, Mahmood NN, Ahmad Mumtaz S, Alharthy A, Lazaridis C, Karakitsos D. New optic nerve sonography quality criteria in the diagnostic evaluation of traumatic brain injury. Crit Care Res Pract. 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hamilton DR, Sargsyan AE, Melton SL, Garcia KM, Oddo B, Kwon DS, Feiveson AH, Dulchavsky SA. Sonography for determining the optic nerve sheath diameter with increasing intracranial pressure in a porcine model. J Ultrasound Med. 2011;30(5):651–9.

    Article  Google Scholar 

  27. 27.

    Rosenthal RJ, Friedman RL, Chidambaram A, Khan AM, Martz J, Shi Q, Nussbaum M. Effects of hyperventilation and hypoventilation on PaCO2 and intracranial pressure during acute elevations of intraabdominal pressure with CO2 pneumoperitoneum: large animal observations. J Am Coll Surg. 1998;187(1):32–8.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Feldman Z, Robertson CS, Contant CF, Gopinath SP, Grossman RG. Positive end expiratory pressure reduces intracranial compliance in the rabbit. J Neurosurg Anesthesiol. 1997;9(2):175–9.

    CAS  Article  Google Scholar 

  29. 29.

    Akca O. Optimizing the intraoperative management of carbon dioxide concentration. Curr Opin Anaesthesiol. 2006;19(1):19–25.

    Article  PubMed  Google Scholar 

  30. 30.

    You AH, Song Y, Kim DH, Suh J, Baek JW, Han DW. Effects of positive end-expiratory pressure on intraocular pressure and optic nerve sheath diameter in robot-assisted laparoscopic radical prostatectomy: a randomized, clinical trial. Medicine. 2019;98(14):e15051.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Joo J, Koh H, Lee K, Lee J. Effects of systemic administration of dexmedetomidine on intraocular pressure and ocular perfusion pressure during laparoscopic surgery in a steep trendelenburg position: prospective, randomized, double-blinded study. J Korean Med Sci. 2016;31(6):989–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Taketani Y, Mayama C, Suzuki N, Wada A, Oka T, Inamochi K, Nomoto Y. Transient but significant visual field defects after robot-assisted laparoscopic radical prostatectomy in deep tRendelenburg position. PLoS ONE. 2015;10(4):e0123361.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Citerio G, Vascotto E, Villa F, Celotti S, Pesenti A. Induced abdominal compartment syndrome increases intracranial pressure in neurotrauma patients: a prospective study. Crit Care Med. 2001;29(7):1466–71.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Chin JH, Kim WJ, Lee J, Han YA, Lim J, Hwang JH, Cho SS, Kim YK. Effect of positive end-expiratory pressure on the sonographic optic nerve sheath diameter as a surrogate for intracranial pressure during robot-assisted laparoscopic prostatectomy: a randomized controlled trial. PLoS ONE. 2017;12(1):e0170369.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Gainsburg DM. Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy. Minerva Anestesiol. 2012;78(5):596–604.

    CAS  PubMed  Google Scholar 

Download references


Intramural source only.

Author information



Corresponding author

Correspondence to Riccardo Colombo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Colombo, R., Agarossi, A., Borghi, B. et al. The effect of prolonged steep head-down laparoscopy on the optical nerve sheath diameter. J Clin Monit Comput 34, 1295–1302 (2020).

Download citation


  • Laparoscopy
  • Pneumoperitoneum
  • Intracranial pressure
  • Optic nerve
  • Ultrasound
  • Trendelenburg