Abstract
Capnography is a first line monitoring system in mechanically ventilated patients. Volumetric capnography supports noninvasive and breath-by-breath information at the bedside using mainstream CO2 and flow sensors placed at the airways opening. This volume-based capnography provides information of important body functions related to the kinetics of carbon dioxide. Volumetric capnography goes one step forward standard respiratory mechanics and provides a new dimension for monitoring of mechanical ventilation. The article discusses the role of volumetric capnography for the clinical monitoring of mechanical ventilation.
This is a preview of subscription content, access via your institution.






References
Anderson CT, Breen PH. Carbon dioxide kinetics and capnography during critical care. Crit Care. 2000;4:207–15.
Folch N, Peronnet F, Pean M, Massicotte D, Lavoie C. Labeled CO2 production and oxidative vs nonoxidative disposal of labeled carbohydrate administered at rest. Metabolism. 2005;54:1428–34.
Cherniak NS, Longobardo GS. Oxygen and carbon dioxide gas stores in the body. Physiol Rev. 1970;50:197–243.
Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev. 2000;80:681–715.
Bidani A. Velocity of CO2 exchanges in the lungs. Am rev Physiol. 1988;50:639–52.
Weinberger SE, Schwartzstein RM, Weiss JW. Hypercapnia. N Engl J Med. 1989;321:1123–231.
Tusman G, Böhm SH, Suarez Sipmann F, Scandurra A, Hedenstierna G. Lung recruitment and positive end-expiratory pressure have different effects on CO2 elimination in healthy and sick lungs. Anesth Analg. 2010;111:968–77.
Suarez Sipmann F, Böhm SH, Tusman G. Volumetric capnography: the time has come. Curr Opin Crit Care. 2014;20:333–9.
Jaffe MB. Infrared measurement of carbon dioxide in the human breath: “breathe-through” devices from Tyndall to the present day. Anesth Analg. 2008;107:890–904.
Nunn JF. Applied respiratory physiology. 4th ed. Oxford: Butterworth-Heinemann; 1993.
Gravenstein JS, Jaffe MG, Gravestein N, Paulus DA. Capnography. 2nd ed. Cambridge: Cambridge University Press; 2004.
Nunn JF. Prediction of carbon dioxide tension during anaesthesia. Anaesthesia. 1960;15:123–33.
Bartels J, Severinghaus JW, Forster RE, Briscoe WA, Bates DV. The respiratory dead space measured by single breath analysis of oxygen, carbon dioxide, nitrogen or helium. J Clin Invest. 1954;33:41–8.
Fletcher R, Jonson B. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth. 1981;53:77–88.
Breen PH, Isserles SA, Harrison BA, Roizen MF. Simple computer measurement of pulmonary VCO2 per breath. J Appl Physiol. 1992;72:2029–35.
Tusman G, Gogniat E, Böhm SH, Scandurra A, Suarez Sipmann F, Torroba A, Casella F, Giannasi S, San Román E. Reference values for volumetric capnography-derived non-invasive parameters in healthy individuals. J Clin Monit Comput. 2013;27:281–8.
Tusman G, Scandurra A, Bohm SH, Suarez Sipmann F, Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput. 2009;23:197–206.
Fowler WS. Lung function studies II. The respiratory dead space. Am J Physiol. 1948;154:405–16.
McClave SA, Spain DA, Skolnick JL, Lowen CC, Kleber MJ, Wickerham PS, Vogt JR, Looney SW. Achievement of a steady-state optimizes results when performing indirect calorimetry. J Parenter Enter Nutr. 2003;27:16–20.
Reeves MM, Davies PS, Bauer J, Battistuta D. Reducing the time period of steady-state does not affect the accuracy of energy expenditure measurements by indirect calorimetry. J Appl Physiol. 2004;97:130–4.
Taskar V, John J, Larsson A, Wetterberg T, Jonson B. Dynamics of carbon dioxide elimination following ventilator resetting. Chest. 1995;108:196–202.
De las Alas V, Voorhees WP, Geddes LA. End-tidal carbon dioxide concentration, carbon dioxide production, heart rate and blood pressure as indicators of induced hyperthermia. J Clin Monit. 1990;6:183–5.
Rodriguez JL, Weissman C, Damask MC, Askanazi J, Hyman AI, Kinney JM. Physiologic requeriments during rewarming: suppression of the shivering response. Crit Care Med. 1983;11:490–7.
Eyolfson DA, Tikuisis P, Xu X, Wessen G, Giesbrecht GG. Measurement and prediction of peak shivering intensity in humans. Eur J Appl Physiol. 2001;84:100–6.
Mizobe T, Nakajima Y, Ueno H, Sessler DI. Fructose administration increases intraoperative core temperature by augmenting both metabolic rate and vasocontriction threshold. Anesthesiology. 2006;104:1124–230.
Boschetti F, Perinatti G, Montevecchi FM. Factors affecting the respiratory ratio during Cardiopulmonary bypass. Int J Artif Organs. 1998;21:802–8.
Kirvela O, Kanto J. Clinical and metabolic response to different types of premedication. Eur J Anaesthesiol. 1991;73:49–53.
Lind L. Metabolic gas exchange during different surgical procedures. Anesthesia. 1995;50:304–7.
Tusman G, Areta M, Climente C, Plit R, Suarez-Sipmann F, Rodríguez-Nieto MJ. Effect of pulmonary perfusion on the slopes of single-breath test of CO2. J Appl Physiol. 2005;99:650–5.
Tusman G, Suarez-Sipmann F, Paez G, Alvarez J, Bohm SH. States of low pulmonary blood flow can be detected non-invasively at the bedside measuring alveolar dead space. J Clin Monit Comput. 2012;26:183–90.
Isserles SA, Breen PH. Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg. 1991;73:808–14.
Burki NK. The dead space to tidal volume ratio in the diagnosis of pulmonary embolism. Am Rev Respir Dis. 1986;133:679–85.
Verschuren F, Listro G, Coffeng R, Thys F, Roeseler J, Zech F, Reynaert M. Volumetric capnography as a screening test for pulmonary embolism in the emergency department. Chest. 2004;125:841–50.
Garnett AR, Ornato JP, Gonzalez ER, Johnson EB. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA. 1987;257:512–5.
Fick A. Ueber Diffusion. Ann Phys. 1855;170:59–86.
Capek JM, Roy RJ. Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng. 1988;35:653–61.
Cade WT, Nabar SR, Keyser RE. Reproducibility of the exponential rise technique of CO2 rebreathing for measuring PvCO2 and CvCO2 to non-invasively estimate cardiac output during incremental, maximal treadmill exercise. Eur J Appl Physiol. 2004;91:669–76.
Haryadi DG, Orr JA, Kuck K, McJames S, Westenskow DR. Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput. 2000;16:361–74.
Kim TS, Rahn H, Farhi LE. Estimation of true venous and arterial PCO2 by gas analysis of a single breath. J Appl Physiol. 1996;21:1338–44.
Capek JMJ, Roy RJR. Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng. 1988;35:653–61.
Gedeon A, Forslund L, Hedenstierna G, Romano E. A new method for noninvasive bedside determination of pulmonary blood flow. Med Bio Eng Comput. 1980;18:411–8.
Hällsjö Sander C, Hallback M, Wallin M, Emtell P, Oldner A, Bjorne H. Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth. 2014;112:824–31.
Peyton PJ, Venkatesan Y, Hood SG, Junor P, May C. Noninvasive, automated and continuous cardiac output monitoring by pulmonary capnodynamics: breath-by-breath comparison with ultrasonic flow probe. Anesthesiology. 2006;105:72–80.
Peyton PJ. Continuous minimally invasive peri-operative monitoring of cardiac output by pulmonary capnotracking: comparison with thermodilution and transesophageal echocardiography. J Clin Monit Comput. 2012;26:121–32.
Peyton PJ. Performance of a second generation pulmonary capnotracking system for continuous monitoring of cardiac output. J Clin Monit Comput. 2018;32:1057–64. https://doi.org/10.1007/s10877-018-0110-y.
Albu G, Wallin M, Hallbäck M, Emtell P, Wolf A, Lonqvist PA, Gothberg S, Petak F, Habre W. Comparison of static end-expiratory and effective lung volumes for gas exchange in healthy and surfactant-depleted lungs. Anesthesiology. 2013;119:101–10.
Hällsjö Sander C, Hallback M, Suarez-Sipmann F, Wallin M, Oldner A, Bjorne H. A novel continuous capnodynamic method for cardiac output assessment in a porcine model of lung lavage. Acta Anaesthesiol Scand. 2015;59:1022–31.
Sander CH, Sigmundsson T, Hallbäck M, Suarez Sipmann F, Wallin M, Oldner A, Bjorne H. A modified breathing pattern improves the performance of a continuous capnodynamic method for estimation of effective pulmonary blood flow. J Clin Monit Comput. 2016;31:1–9.
Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol. 1974;36:588–99.
West JB, Wagner PD. Pulmonary gas exchange. In: West JB, editor. Bioengineering aspects of the lungs. New York: Dekker; 1977.
Tusman G, Suarez Sipmann F, Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesth Analg. 2012;114:866–74.
Breen PH, Mazumdar B, Skinner SC. Comparison of end-tidal PCO2 and average alveolar expired PCO2 during positive end-expiratory pressure. Anesth Analg. 1996;82:368–73.
Riley RL, Cournand A, Donald KW. Analysis of factors affecting partial pressures of oxygen and carbon dioxide in gas and blood of lungs: methods. J Appl Physiol. 1951;4:102–20.
Nunn JF, Holmdahl MH. Enrik Henghoff and the volume inefficax. Acta Anaesthesiol Scand. 1990;34:24–6.
Enghoff H. Volum inefficax. Bemerkungen zur Frage des schädlichen Raumes. Upsala Läk Fören Förch. 1938;44:191–218.
Tusman G, Suarez Sipmann F, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37:870–4.
Raine JM, Bishop JM. A-a difference in O2 tension and physiological dead space in normal man. J Appl Physiol. 1963;18:284–8.
Mellengaard K. The alveolar-arterial oxygen difference: its size and components in normal man. Acta Physiol. 1966;67:10–20.
Nunn JF, Hill DW. Respiratory dead space and arterial to end-tidal CO2 tension difference in anesthetized man. J Appl Physiol. 1960;15:383–9.
Böhm SH, Vazquez de Anda GF, Lachmann B. The Open Lung Concept. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine 1998, vol. 1998. Berlin: Springer; 1998.
Anthonisen NR, Fleetham JA. Ventilation: total, alveolar and dead space. Compr Physiol. 2011;1:1. https://doi.org/10.1002/cphy.cp030407.
Verschuere S, Massion PB, Verschuren F, Damas P, Magder S. Volumetric capnography: lessons from the past and current clinical applications. Crit Care. 2016;20:184.
Nassabeh-Montazami S, Abubakar KM, Keszler M. The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant. Pediatr Pulmonol. 2009;44:128–33.
Severinghaus JW, Stupfel M. Alveolar deadspace as an index of distribution of blood flow in pulmonary capillaries. J Appl Physiol. 1957;10:335–48.
Bohr C. Über die Lungeatmung. Skand Arch Physiol. 1891;2:236–8.
Ảström E, Niklason L, Drefeldt B, Bajc M, Jonson B. Partitioning of dead space – a method and reference values in the awake human. Eur Respir J. 2000;16:659–64.
Fletcher R, Jonson B. Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Effects of tidal volume and frequency of respiration. Br J Anaesth. 1984;56:109–19.
Hedenstierna G, McCarthy G. The effect of anaesthesia and intermittent positive pressure ventilation with different frequencies on the anatomical and alveolar deadspace. Br J Anaesth. 1975;47:847–52.
Blanch L, Lucangelo U, Lopez-Aguilar J, Fernandez R, Romero PV. Volumetric capnography in patients with acute lung injury: effects of positive end-expiratory pressure. Eur Respir J. 1999;13:1048–54.
Beydon L, Uttman L, Rawal R, Jonson B. Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury. Intensive Care Med. 2002;28:1239–45.
Gogniat E, Ducrey M, Dianti J, Madorno M, Roux N, Midley A, Raffo J, Giannasi S, San Román E, Suarez-Sipmann F, Tusman G. Dead space analysis at different levels of positive end-expiratory pressure in acute respiratory distress syndrome patients. J Crit Care. 2018;45:231–8.
MacKinnon JC, Houston PL, McGuire GP. Validation of the Deltatrac metabolic cart for measurement of dead space to tidal volume ratio. Respir Care. 1997;42:761–4.
Lum L, Saville A, Venkataraman ST. Accuracy of physiologic deadspace measurement in intubated pediatric patients using a metabolic monitor: comparison with the Douglas bag technique. Crit Care Med. 1998;26:760–4.
Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic dead space measurements in patients with ARDS using volumetric capnography: comparison with the metabolic monitor method. Respir Care. 2005;50:462–7.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Peter Kremeier is employee of Salvia GmbH. Stephan H Böhm performed consulting activities for Salvia GmbH. Gerardo Tusman performed consulting activities for Getinge AB.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kremeier, P., Böhm, S.H. & Tusman, G. Clinical use of volumetric capnography in mechanically ventilated patients. J Clin Monit Comput 34, 7–16 (2020). https://doi.org/10.1007/s10877-019-00325-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10877-019-00325-9