Skip to main content

Clinical use of volumetric capnography in mechanically ventilated patients

Abstract

Capnography is a first line monitoring system in mechanically ventilated patients. Volumetric capnography supports noninvasive and breath-by-breath information at the bedside using mainstream CO2 and flow sensors placed at the airways opening. This volume-based capnography provides information of important body functions related to the kinetics of carbon dioxide. Volumetric capnography goes one step forward standard respiratory mechanics and provides a new dimension for monitoring of mechanical ventilation. The article discusses the role of volumetric capnography for the clinical monitoring of mechanical ventilation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anderson CT, Breen PH. Carbon dioxide kinetics and capnography during critical care. Crit Care. 2000;4:207–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Folch N, Peronnet F, Pean M, Massicotte D, Lavoie C. Labeled CO2 production and oxidative vs nonoxidative disposal of labeled carbohydrate administered at rest. Metabolism. 2005;54:1428–34.

    CAS  PubMed  Google Scholar 

  3. Cherniak NS, Longobardo GS. Oxygen and carbon dioxide gas stores in the body. Physiol Rev. 1970;50:197–243.

    Google Scholar 

  4. Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev. 2000;80:681–715.

    CAS  PubMed  Google Scholar 

  5. Bidani A. Velocity of CO2 exchanges in the lungs. Am rev Physiol. 1988;50:639–52.

    CAS  Google Scholar 

  6. Weinberger SE, Schwartzstein RM, Weiss JW. Hypercapnia. N Engl J Med. 1989;321:1123–231.

    Google Scholar 

  7. Tusman G, Böhm SH, Suarez Sipmann F, Scandurra A, Hedenstierna G. Lung recruitment and positive end-expiratory pressure have different effects on CO2 elimination in healthy and sick lungs. Anesth Analg. 2010;111:968–77.

    PubMed  Google Scholar 

  8. Suarez Sipmann F, Böhm SH, Tusman G. Volumetric capnography: the time has come. Curr Opin Crit Care. 2014;20:333–9.

    PubMed  Google Scholar 

  9. Jaffe MB. Infrared measurement of carbon dioxide in the human breath: “breathe-through” devices from Tyndall to the present day. Anesth Analg. 2008;107:890–904.

    PubMed  Google Scholar 

  10. Nunn JF. Applied respiratory physiology. 4th ed. Oxford: Butterworth-Heinemann; 1993.

    Google Scholar 

  11. Gravenstein JS, Jaffe MG, Gravestein N, Paulus DA. Capnography. 2nd ed. Cambridge: Cambridge University Press; 2004.

    Google Scholar 

  12. Nunn JF. Prediction of carbon dioxide tension during anaesthesia. Anaesthesia. 1960;15:123–33.

    CAS  PubMed  Google Scholar 

  13. Bartels J, Severinghaus JW, Forster RE, Briscoe WA, Bates DV. The respiratory dead space measured by single breath analysis of oxygen, carbon dioxide, nitrogen or helium. J Clin Invest. 1954;33:41–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fletcher R, Jonson B. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth. 1981;53:77–88.

    CAS  PubMed  Google Scholar 

  15. Breen PH, Isserles SA, Harrison BA, Roizen MF. Simple computer measurement of pulmonary VCO2 per breath. J Appl Physiol. 1992;72:2029–35.

    CAS  PubMed  Google Scholar 

  16. Tusman G, Gogniat E, Böhm SH, Scandurra A, Suarez Sipmann F, Torroba A, Casella F, Giannasi S, San Román E. Reference values for volumetric capnography-derived non-invasive parameters in healthy individuals. J Clin Monit Comput. 2013;27:281–8.

    PubMed  Google Scholar 

  17. Tusman G, Scandurra A, Bohm SH, Suarez Sipmann F, Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput. 2009;23:197–206.

    PubMed  Google Scholar 

  18. Fowler WS. Lung function studies II. The respiratory dead space. Am J Physiol. 1948;154:405–16.

    CAS  PubMed  Google Scholar 

  19. McClave SA, Spain DA, Skolnick JL, Lowen CC, Kleber MJ, Wickerham PS, Vogt JR, Looney SW. Achievement of a steady-state optimizes results when performing indirect calorimetry. J Parenter Enter Nutr. 2003;27:16–20.

    Google Scholar 

  20. Reeves MM, Davies PS, Bauer J, Battistuta D. Reducing the time period of steady-state does not affect the accuracy of energy expenditure measurements by indirect calorimetry. J Appl Physiol. 2004;97:130–4.

    PubMed  Google Scholar 

  21. Taskar V, John J, Larsson A, Wetterberg T, Jonson B. Dynamics of carbon dioxide elimination following ventilator resetting. Chest. 1995;108:196–202.

    CAS  PubMed  Google Scholar 

  22. De las Alas V, Voorhees WP, Geddes LA. End-tidal carbon dioxide concentration, carbon dioxide production, heart rate and blood pressure as indicators of induced hyperthermia. J Clin Monit. 1990;6:183–5.

    Google Scholar 

  23. Rodriguez JL, Weissman C, Damask MC, Askanazi J, Hyman AI, Kinney JM. Physiologic requeriments during rewarming: suppression of the shivering response. Crit Care Med. 1983;11:490–7.

    CAS  PubMed  Google Scholar 

  24. Eyolfson DA, Tikuisis P, Xu X, Wessen G, Giesbrecht GG. Measurement and prediction of peak shivering intensity in humans. Eur J Appl Physiol. 2001;84:100–6.

    CAS  PubMed  Google Scholar 

  25. Mizobe T, Nakajima Y, Ueno H, Sessler DI. Fructose administration increases intraoperative core temperature by augmenting both metabolic rate and vasocontriction threshold. Anesthesiology. 2006;104:1124–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Boschetti F, Perinatti G, Montevecchi FM. Factors affecting the respiratory ratio during Cardiopulmonary bypass. Int J Artif Organs. 1998;21:802–8.

    CAS  PubMed  Google Scholar 

  27. Kirvela O, Kanto J. Clinical and metabolic response to different types of premedication. Eur J Anaesthesiol. 1991;73:49–53.

    CAS  Google Scholar 

  28. Lind L. Metabolic gas exchange during different surgical procedures. Anesthesia. 1995;50:304–7.

    CAS  Google Scholar 

  29. Tusman G, Areta M, Climente C, Plit R, Suarez-Sipmann F, Rodríguez-Nieto MJ. Effect of pulmonary perfusion on the slopes of single-breath test of CO2. J Appl Physiol. 2005;99:650–5.

    CAS  PubMed  Google Scholar 

  30. Tusman G, Suarez-Sipmann F, Paez G, Alvarez J, Bohm SH. States of low pulmonary blood flow can be detected non-invasively at the bedside measuring alveolar dead space. J Clin Monit Comput. 2012;26:183–90.

    PubMed  Google Scholar 

  31. Isserles SA, Breen PH. Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg. 1991;73:808–14.

    CAS  PubMed  Google Scholar 

  32. Burki NK. The dead space to tidal volume ratio in the diagnosis of pulmonary embolism. Am Rev Respir Dis. 1986;133:679–85.

    CAS  PubMed  Google Scholar 

  33. Verschuren F, Listro G, Coffeng R, Thys F, Roeseler J, Zech F, Reynaert M. Volumetric capnography as a screening test for pulmonary embolism in the emergency department. Chest. 2004;125:841–50.

    PubMed  Google Scholar 

  34. Garnett AR, Ornato JP, Gonzalez ER, Johnson EB. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA. 1987;257:512–5.

    CAS  PubMed  Google Scholar 

  35. Fick A. Ueber Diffusion. Ann Phys. 1855;170:59–86.

    Google Scholar 

  36. Capek JM, Roy RJ. Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng. 1988;35:653–61.

    CAS  PubMed  Google Scholar 

  37. Cade WT, Nabar SR, Keyser RE. Reproducibility of the exponential rise technique of CO2 rebreathing for measuring PvCO2 and CvCO2 to non-invasively estimate cardiac output during incremental, maximal treadmill exercise. Eur J Appl Physiol. 2004;91:669–76.

    PubMed  Google Scholar 

  38. Haryadi DG, Orr JA, Kuck K, McJames S, Westenskow DR. Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput. 2000;16:361–74.

    CAS  PubMed  Google Scholar 

  39. Kim TS, Rahn H, Farhi LE. Estimation of true venous and arterial PCO2 by gas analysis of a single breath. J Appl Physiol. 1996;21:1338–44.

    Google Scholar 

  40. Capek JMJ, Roy RJR. Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng. 1988;35:653–61.

    CAS  PubMed  Google Scholar 

  41. Gedeon A, Forslund L, Hedenstierna G, Romano E. A new method for noninvasive bedside determination of pulmonary blood flow. Med Bio Eng Comput. 1980;18:411–8.

    CAS  Google Scholar 

  42. Hällsjö Sander C, Hallback M, Wallin M, Emtell P, Oldner A, Bjorne H. Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth. 2014;112:824–31.

    PubMed  Google Scholar 

  43. Peyton PJ, Venkatesan Y, Hood SG, Junor P, May C. Noninvasive, automated and continuous cardiac output monitoring by pulmonary capnodynamics: breath-by-breath comparison with ultrasonic flow probe. Anesthesiology. 2006;105:72–80.

    PubMed  Google Scholar 

  44. Peyton PJ. Continuous minimally invasive peri-operative monitoring of cardiac output by pulmonary capnotracking: comparison with thermodilution and transesophageal echocardiography. J Clin Monit Comput. 2012;26:121–32.

    PubMed  Google Scholar 

  45. Peyton PJ. Performance of a second generation pulmonary capnotracking system for continuous monitoring of cardiac output. J Clin Monit Comput. 2018;32:1057–64. https://doi.org/10.1007/s10877-018-0110-y.

    Article  PubMed  Google Scholar 

  46. Albu G, Wallin M, Hallbäck M, Emtell P, Wolf A, Lonqvist PA, Gothberg S, Petak F, Habre W. Comparison of static end-expiratory and effective lung volumes for gas exchange in healthy and surfactant-depleted lungs. Anesthesiology. 2013;119:101–10.

    PubMed  Google Scholar 

  47. Hällsjö Sander C, Hallback M, Suarez-Sipmann F, Wallin M, Oldner A, Bjorne H. A novel continuous capnodynamic method for cardiac output assessment in a porcine model of lung lavage. Acta Anaesthesiol Scand. 2015;59:1022–31.

    PubMed  Google Scholar 

  48. Sander CH, Sigmundsson T, Hallbäck M, Suarez Sipmann F, Wallin M, Oldner A, Bjorne H. A modified breathing pattern improves the performance of a continuous capnodynamic method for estimation of effective pulmonary blood flow. J Clin Monit Comput. 2016;31:1–9.

    Google Scholar 

  49. Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol. 1974;36:588–99.

    CAS  PubMed  Google Scholar 

  50. West JB, Wagner PD. Pulmonary gas exchange. In: West JB, editor. Bioengineering aspects of the lungs. New York: Dekker; 1977.

    Google Scholar 

  51. Tusman G, Suarez Sipmann F, Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesth Analg. 2012;114:866–74.

    PubMed  Google Scholar 

  52. Breen PH, Mazumdar B, Skinner SC. Comparison of end-tidal PCO2 and average alveolar expired PCO2 during positive end-expiratory pressure. Anesth Analg. 1996;82:368–73.

    CAS  PubMed  Google Scholar 

  53. Riley RL, Cournand A, Donald KW. Analysis of factors affecting partial pressures of oxygen and carbon dioxide in gas and blood of lungs: methods. J Appl Physiol. 1951;4:102–20.

    CAS  PubMed  Google Scholar 

  54. Nunn JF, Holmdahl MH. Enrik Henghoff and the volume inefficax. Acta Anaesthesiol Scand. 1990;34:24–6.

    Google Scholar 

  55. Enghoff H. Volum inefficax. Bemerkungen zur Frage des schädlichen Raumes. Upsala Läk Fören Förch. 1938;44:191–218.

    Google Scholar 

  56. Tusman G, Suarez Sipmann F, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37:870–4.

    PubMed  Google Scholar 

  57. Raine JM, Bishop JM. A-a difference in O2 tension and physiological dead space in normal man. J Appl Physiol. 1963;18:284–8.

    CAS  PubMed  Google Scholar 

  58. Mellengaard K. The alveolar-arterial oxygen difference: its size and components in normal man. Acta Physiol. 1966;67:10–20.

    Google Scholar 

  59. Nunn JF, Hill DW. Respiratory dead space and arterial to end-tidal CO2 tension difference in anesthetized man. J Appl Physiol. 1960;15:383–9.

    CAS  PubMed  Google Scholar 

  60. Böhm SH, Vazquez de Anda GF, Lachmann B. The Open Lung Concept. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine 1998, vol. 1998. Berlin: Springer; 1998.

    Google Scholar 

  61. Anthonisen NR, Fleetham JA. Ventilation: total, alveolar and dead space. Compr Physiol. 2011;1:1. https://doi.org/10.1002/cphy.cp030407.

    Article  Google Scholar 

  62. Verschuere S, Massion PB, Verschuren F, Damas P, Magder S. Volumetric capnography: lessons from the past and current clinical applications. Crit Care. 2016;20:184.

    Google Scholar 

  63. Nassabeh-Montazami S, Abubakar KM, Keszler M. The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant. Pediatr Pulmonol. 2009;44:128–33.

    PubMed  Google Scholar 

  64. Severinghaus JW, Stupfel M. Alveolar deadspace as an index of distribution of blood flow in pulmonary capillaries. J Appl Physiol. 1957;10:335–48.

    CAS  PubMed  Google Scholar 

  65. Bohr C. Über die Lungeatmung. Skand Arch Physiol. 1891;2:236–8.

    Google Scholar 

  66. Ảström E, Niklason L, Drefeldt B, Bajc M, Jonson B. Partitioning of dead space – a method and reference values in the awake human. Eur Respir J. 2000;16:659–64.

    PubMed  Google Scholar 

  67. Fletcher R, Jonson B. Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Effects of tidal volume and frequency of respiration. Br J Anaesth. 1984;56:109–19.

    CAS  PubMed  Google Scholar 

  68. Hedenstierna G, McCarthy G. The effect of anaesthesia and intermittent positive pressure ventilation with different frequencies on the anatomical and alveolar deadspace. Br J Anaesth. 1975;47:847–52.

    CAS  PubMed  Google Scholar 

  69. Blanch L, Lucangelo U, Lopez-Aguilar J, Fernandez R, Romero PV. Volumetric capnography in patients with acute lung injury: effects of positive end-expiratory pressure. Eur Respir J. 1999;13:1048–54.

    CAS  PubMed  Google Scholar 

  70. Beydon L, Uttman L, Rawal R, Jonson B. Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury. Intensive Care Med. 2002;28:1239–45.

    CAS  PubMed  Google Scholar 

  71. Gogniat E, Ducrey M, Dianti J, Madorno M, Roux N, Midley A, Raffo J, Giannasi S, San Román E, Suarez-Sipmann F, Tusman G. Dead space analysis at different levels of positive end-expiratory pressure in acute respiratory distress syndrome patients. J Crit Care. 2018;45:231–8.

    PubMed  Google Scholar 

  72. MacKinnon JC, Houston PL, McGuire GP. Validation of the Deltatrac metabolic cart for measurement of dead space to tidal volume ratio. Respir Care. 1997;42:761–4.

    Google Scholar 

  73. Lum L, Saville A, Venkataraman ST. Accuracy of physiologic deadspace measurement in intubated pediatric patients using a metabolic monitor: comparison with the Douglas bag technique. Crit Care Med. 1998;26:760–4.

    CAS  PubMed  Google Scholar 

  74. Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic dead space measurements in patients with ARDS using volumetric capnography: comparison with the metabolic monitor method. Respir Care. 2005;50:462–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Tusman.

Ethics declarations

Conflict of interest

Peter Kremeier is employee of Salvia GmbH. Stephan H Böhm performed consulting activities for Salvia GmbH. Gerardo Tusman performed consulting activities for Getinge AB.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kremeier, P., Böhm, S.H. & Tusman, G. Clinical use of volumetric capnography in mechanically ventilated patients. J Clin Monit Comput 34, 7–16 (2020). https://doi.org/10.1007/s10877-019-00325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-019-00325-9

Keywords