Skip to main content

Intraoperative reduction of vasopressors using processed electroencephalographic monitoring in patients undergoing elective cardiac surgery: a randomized clinical trial

Abstract

Intraoperative vasopressor and fluid application are common strategies against hypotension. Use of processed electroencephalographic monitoring (pEEG) may reduce vasopressor application, a known risk factor for organ dysfunction, in elective cardiac surgery patients. Randomized single-centre clinical trial at Jena University Hospital. Adult patients operated on cardiopulmonary bypass or off-pump coronary artery bypass grafting were randomised to receive anesthesia with visible or blinded pEEG using Narcotrend™. In blinded-Narcotrend (NT) depth of anesthesia was extrapolated from clinical signs, hemodynamic response and anesthetic concentration, supplemented by target indices between 37 and 64 in the visible-NT group. Intraoperative norepinephrine requirement (primary endpoint), fluid balance, extubation time, delirium occurrence and adverse events were evaluated. Patients of the intent-to-treat population (visible-NT: n = 123, blinded-NT: n = 122) had similar patient and procedural characteristics. Adjusted for type of surgery intraoperative Norepinephrine application was significantly reduced in visible-NT (n = 120, robust mean of cumulative dose 4.71 µg/kg bodyweight) compared to blinded-NT patients (n = 119, 6.14 µg/kg bodyweight) (adjusted robust mean difference 1.71 (95% CI 0.33–3.10) µg/kg bodyweight). Although reduction in patients operated on cardiopulmonary bypass was higher the interaction was not significant in post-hoc subgroup analysis. Intraoperative fluid balance was similar among both groups and strata. Extubation time was non-significantly lower in visible than in blinded-NT group. Overall postoperative delirium risk was 16.4% without differences among the groups. Adverse events—sudden movement/coughing, perspiration or hypertension—occurred more often with visible-NT, while one blinded-NT patient experienced intraoperative awareness. Titration of depth of anesthesia in elective cardiac surgery patients using pEEG allows to reduce application of norepinephrine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Lonjaret L, Lairez O, Minville V, Geeraerts T. Optimal perioperative management of arterial blood pressure. Integr Blood Press Control. 2014;7:49–59.

    CAS  Article  Google Scholar 

  2. Singh A, Antognini JF. Perioperative hypotension and myocardial ischemia: diagnostic and therapeutic approaches. Ann Card Anaesth. 2011;14:127–32.

    Article  Google Scholar 

  3. Weis F, Kilger E, Beiras-Fernandez A, Nassau K, Reuter D, Goetz A, et al. Association between vasopressor dependence and early outcome in patients after cardiac surgery. Anaesthesia. 2006;61:938–42.

    CAS  Article  Google Scholar 

  4. Luckner G, Dünser MW, Jochberger S, Mayr VD, Wenzel V, Ulmer H, et al. Arginine vasopressin in 316 patients with advanced vasodilatory shock. Crit Care Med. 2005;33:2659–66.

    CAS  Article  Google Scholar 

  5. Schmittinger CA, Torgersen C, Luckner G, Schröder DCH, Lorenz I, Dünser MW. Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med. 2012;38:950–8.

    CAS  Article  Google Scholar 

  6. Leslie K, Short TG. Anesthetic depth and long-term survival: an update. Can J Anaesth J Can Anesth. 2016;63:233–40.

    Article  Google Scholar 

  7. Bruhn J, Myles PS, Sneyd R, Struys MMRF. Depth of anaesthesia monitoring: what’s available, what’s validated and what’s next? Br J Anaesth. 2006;97:85–94.

    CAS  Article  Google Scholar 

  8. Myles PS, Leslie K, McNeil J, Forbes A, Chan MTV. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet. 2004;363:1757–63.

    CAS  Article  Google Scholar 

  9. Bennett C, Voss LJ, Barnard JPM, Sleigh JW. Practical use of the raw electroencephalogram waveform during general anesthesia: the art and science. Anesth Analg. 2009;109:539–50.

    Article  Google Scholar 

  10. Fahy BG, Chau DF. The technology of processed electroencephalogram monitoring devices for assessment of depth of anesthesia. Anesth Analg. 2018;126:111–7.

    Article  Google Scholar 

  11. Kreuer S, Wilhelm W. The narcotrend monitor. Best Pract Res Clin Anaesthesiol. 2006;20:111–9.

    CAS  Article  Google Scholar 

  12. Gomes RV, Tura B, Mendonça Filho HTF de, Almeida Campos LA de, Rouge A, Matos Nogueira PM de, et al. A first postoperative day predictive score of mortality for cardiac surgery. Ann Thorac Cardiovasc Surg. 2007;13:159–64.

    PubMed  Google Scholar 

  13. Lehmann A, Schmidt M, Zeitler C, Kiessling A-H, Isgro F, Boldt J. Bispectral index and electroencephalographic entropy in patients undergoing aortocoronary bypass grafting. Eur J Anaesthesiol. 2007;24:751–60.

    CAS  Article  Google Scholar 

  14. Nitzschke R, Wilgusch J, Kersten JF, Trepte CJ, Haas SA, Reuter DA, et al. Bispectral index guided titration of sevoflurane in on-pump cardiac surgery reduces plasma sevoflurane concentration and vasopressor requirements: a prospective, controlled, sequential two-arm clinical study. Eur J Anaesthesiol. 2014;31:482–90.

    CAS  Article  Google Scholar 

  15. Sponholz C, Schelenz C, Reinhart K, Schirmer U, Stehr SN. Catecholamine and volume therapy for cardiac surgery in Germany: results from a postal survey. PLoS ONE. 2014;9:e103996.

    Article  Google Scholar 

  16. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, et al. Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the Intensive Care Unit (CAM-ICU). Crit Care Med. 2001;29:1370–9.

    CAS  Article  Google Scholar 

  17. Brice DD, Hetherington RR, Utting JE. A simple study of awareness and dreaming during anaesthesia. Br J Anaesth. 1970;42:535–42.

    CAS  Article  Google Scholar 

  18. Huber PJ. Robust regression: asymptotics, conjectures and Monte Carlo. Ann Stat. 1973;1:799–821.

    Article  Google Scholar 

  19. Altman DG, editor. Statistics with confidence: confidence intervals and statistical guidelines; [includes disk]. 2nd ed. [Nachdr.]. London: BMJ Books; 2011.

    Google Scholar 

  20. Reich DL, Hossain S, Krol M, Baez B, Patel P, Bernstein A, et al. Predictors of hypotension after induction of general anesthesia. Anesth Analg. 2005;101:622–8. (Table of contents)

    Article  Google Scholar 

  21. Kristof AS, Magder S. Low systemic vascular resistance state in patients undergoing cardiopulmonary bypass. Crit Care Med. 1999;27:1121–7.

    CAS  Article  Google Scholar 

  22. Bauer M, Wilhelm W, Kraemer T, Kreuer S, Brandt A, Adams HA, et al. Impact of bispectral index monitoring on stress response and propofol consumption in patients undergoing coronary artery bypass surgery. Anesthesiology. 2004;101:1096–104.

    CAS  Article  Google Scholar 

  23. Bignami E, Guarnieri M, Gemma M. Fluid management in cardiac surgery patients: pitfalls, challenges and solutions. Minerva Anestesiol. 2017;83:638–51.

    PubMed  Google Scholar 

  24. Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Database Syst Rev. 2014;6:CD003843.

    Google Scholar 

  25. Weissman C. Pulmonary function after cardiac and thoracic surgery. Anesth Analg. 1999;88:1272–9.

    CAS  Article  Google Scholar 

  26. Puri GD, Murthy SS. Bispectral index monitoring in patients undergoing cardiac surgery under cardiopulmonary bypass. Eur J Anaesthesiol. 2003;20:451–6.

    CAS  Article  Google Scholar 

  27. Anderson J, Henry L, Hunt S, Ad N. Bispectral index monitoring to facilitate early extubation following cardiovascular surgery. Clin Nurse Spec CNS. 2010;24:140–8.

    Article  Google Scholar 

  28. Probst S, Cech C, Haentschel D, Scholz M, Ender J. A specialized post anaesthetic care unit improves fast-track management in cardiac surgery: a prospective randomized trial. Crit Care Lond Engl. 2014;18:468.

    Article  Google Scholar 

  29. Wong W-T, Lai VK, Chee YE, Lee A. Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database Syst Rev. 2016;9:CD003587.

    PubMed  Google Scholar 

  30. Brown CH. Delirium in the cardiac surgical ICU. Curr Opin Anaesthesiol. 2014;27:117–22.

    CAS  Article  Google Scholar 

  31. Soehle M, Dittmann A, Ellerkmann RK, Baumgarten G, Putensen C, Guenther U. Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: a prospective, observational study. BMC Anesthesiol. 2015;15:61.

    Article  Google Scholar 

  32. Cascella M, Bifulco F, Viscardi D, Tracey MC, Carbone D, Cuomo A. Limitation in monitoring depth of anesthesia: a case report. J Anesth. 2016;30:345–48.

    Article  Google Scholar 

  33. Dutton RC, Smith WD, Bennett HL, Archer S, Smith NT. Craniofacial electromyogram activation response: another indicator of anesthetic depth. J Clin Monit Comput. 1998;14:5–17.

    CAS  Article  Google Scholar 

  34. Jellish WS, Leonetti JP, Buoy CM, Sincacore JM, Sawicki KJ, Macken MP. Facial nerve electromyographic monitoring to predict movement in patients titrated to a standard anesthetic depth. Anesth Analg. 2009;109:551–8.

    CAS  Article  Google Scholar 

  35. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI), Schweizerische Gesellschaft für Anästhesiologie und Reanimation (SGAR), Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie (DGTHG). Neuromonitoring in der Kardioanästhesie: Gemeinsame Stellungnahme der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI), Schweizerischen Gesellschaft für Anästhesiologie und Reanimation (SGAR) und Deutschen Gesellschaft für Thorax-, Herz- und Gefäßchirurgie (DGTHG). Z Für Herz-Thorax- Gefäßchirurgie. 2014;28:430–47.

  36. Hajat Z, Ahmad N, Andrzejowski J. The role and limitations of EEG-based depth of anaesthesia monitoring in theatres and intensive care. Anaesthesia. 2017;72:38–47.

    Article  Google Scholar 

  37. Tomic V, Russwurm S, Möller E, Claus RA, Blaess M, Brunkhorst F, et al. Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation. 2005;112:2912–20.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support and sponsorship: The study was supported by the Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany. The study was investigator initiated, with external support of Narcotrend (Hannover, Germany), which provided the NT modules for intraoperative usage. Narcotrend™ had no role in data collection, analysis and quality control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sponholz.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest regarding this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sponholz, C., Schuwirth, C., Koenig, L. et al. Intraoperative reduction of vasopressors using processed electroencephalographic monitoring in patients undergoing elective cardiac surgery: a randomized clinical trial. J Clin Monit Comput 34, 71–80 (2020). https://doi.org/10.1007/s10877-019-00284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-019-00284-1

Keywords

  • Cardiac anesthesia
  • Neuromonitoring
  • Catecholamines
  • Adverse events