Skip to main content

Advertisement

Log in

Respiratory measurement using infrared thermography and respiratory volume monitor during sedation in patients undergoing endoscopic urologic procedures under spinal anesthesia

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

A Correction to this article was published on 07 January 2021

This article has been updated

Abstract

We aimed to evaluate changes in respiratory pattern after sedation by simultaneously applying a respiratory volume monitor (ExSpiron1Xi, RVM) and infrared thermography (IRT) to patients undergoing spinal anesthesia during endoscopic urologic surgeries. After spinal anesthesia was performed, the patient was placed in a lithotomy position for surgery. Then, we established the baseline of the RVM, and started monitoring the mouth and nose with the infrared camera. SpO2 was continuously measured throughout these processes. Once the baseline was set, 0.05 mg/kg midazolam was administered for sedation. Apnea was defined as cessation of airflow for ≥ 10 s with respiratory rate of < 6 breaths/min; hypopnea was defined as a decrease in oxygen hemoglobin of > 4%, compared to baseline. We measured the time at which apnea was detected by IRT, the time at which hypopnea was detected by RVM, and the time at which hypoxia was detected by SpO2. Twenty patients (age: 68.9 ± 11.2 years, body mass index: 24.2 ± 2.6 kg/min2) completed the study. Before sedation, the baseline correlation coefficient of respiratory rate detection between RVM and IRT was 0.866. After midazolam administration, apnea was detected in all subjects within the first 5 min by IRT; the median time required to detect apnea was 102.5 [interquartile range (IQR) 25–75%: 80–155] s. Hypopnea was detected in all subjects within the first 5 min by RVM: the median time required to detect hypopnea was 142.5 (IQR 115–185.2) s. The median time required for SpO2 to decrease > 4% from baseline was 160 (IQR 125–205) s. Our results suggest that IRT can be useful for rapid detection of respiratory changes in patients undergoing sedation following spinal anesthesia for endoscopic urologic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 07 January 2021

    In the original publication of the article, on page 2 under section ‘Clinical Setting’, the Institutional Research Board of Severance Hospital (Reference No. 1-2016-0008) was published incorrectly. The correct reference number should read as 1-2016-0063.

References

  1. Miller RD. Miller’s anesthesia. 8th ed. Philadelphia: Elsevier/Saunders; 2015.

    Google Scholar 

  2. Kim J, Kim WO, Kim HB, Kil HK. Adequate sedation with single-dose dexmedetomidine in patients undergoing transurethral resection of the prostate with spinal anaesthesia: a dose-response study by age group. BMC Anesthesiol. 2015;15:17. https://doi.org/10.1186/1471-2253-15-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deng X, Gu W, Li Y, Liu M, Li Y, Gao X. Age-group-specific associations between the severity of obstructive sleep apnea and relevant risk factors in male and female patients. PLoS ONE. 2014;9(9):e107380. https://doi.org/10.1371/journal.pone.0107380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence. Eur Urol. 2013;63(5):800–9. https://doi.org/10.1016/j.eururo.2012.11.013.

    Article  CAS  PubMed  Google Scholar 

  5. Bezel R, Russi E, Kronauer H, Mothersill I. Life-threatening apnea after midazolam administration in a patient with obstructive sleep apnea syndrome. Schweiz Med Wochenschr. 1987;117(15):579–83.

    CAS  PubMed  Google Scholar 

  6. Kiriyama S, Gotoda T, Sano H, Oda I, Nishimoto F, Hirashima T, Kusano C, Kuwano H. Safe and effective sedation in endoscopic submucosal dissection for early gastric cancer: a randomized comparison between propofol continuous infusion and intermittent midazolam injection. J Gastroenterol. 2010;45(8):831–7. https://doi.org/10.1007/s00535-010-0222-8.

    Article  CAS  PubMed  Google Scholar 

  7. Beitz A, Riphaus A, Meining A, Kronshage T, Geist C, Wagenpfeil S, Weber A, Jung A, Bajbouj M, Pox C, Schneider G, Schmid RM, Wehrmann T, von Delius S. Capnographic monitoring reduces the incidence of arterial oxygen desaturation and hypoxemia during propofol sedation for colonoscopy: a randomized, controlled study (ColoCap Study). Am J Gastroenterol. 2012;107(8):1205–12. https://doi.org/10.1038/ajg.2012.136.

    Article  CAS  PubMed  Google Scholar 

  8. Friedrich-Rust M, Welte M, Welte C, Albert J, Meckbach Y, Herrmann E, Kannengiesser M, Trojan J, Filmann N, Schroeter H, Zeuzem S, Bojunga J. Capnographic monitoring of propofol-based sedation during colonoscopy. Endoscopy. 2014;46(3):236–44. https://doi.org/10.1055/s-0033-1359149.

    Article  PubMed  Google Scholar 

  9. Qadeer MA, Vargo JJ, Dumot JA, Lopez R, Trolli PA, Stevens T, Parsi MA, Sanaka MR, Zuccaro G. Capnographic monitoring of respiratory activity improves safety of sedation for endoscopic cholangiopancreatography and ultrasonography. Gastroenterology. 2009;136(5):1568–76. quiz 819–20.

    Article  PubMed  Google Scholar 

  10. Houtveen JH, Groot PFC, de Geus EJC. Validation of the thoracic impedance derived respiratory signal using multilevel analysis. Int J Psychophysiol. 2006;59(2):97–106. https://doi.org/10.1016/j.ijpsycho.2005.02.003.

    Article  PubMed  Google Scholar 

  11. Corbishley P, Rodriguez-Villegas E. Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system. Biomed Eng IEEE Trans. 2008;55(1):196–204. https://doi.org/10.1109/TBME.2007.910679.

    Article  Google Scholar 

  12. Jafarian K, Amineslami M, Hassani K, Navidbakhsh M, Lahiji MN, Doyle DJ. A multi-channel acoustics monitor for perioperative respiratory monitoring: preliminary data. J Clin Monit Comput. 2016;30(1):107–18. https://doi.org/10.1007/s10877-015-9693-8.

    Article  PubMed  Google Scholar 

  13. Guechi Y, Pichot A, Frasca D, Rayeh-Pelardy F, Lardeur JY, Mimoz O. Assessment of noninvasive acoustic respiration rate monitoring in patients admitted to an emergency department for drug or alcoholic poisoning. J Clin Monit Comput. 2015;29(6):721–6. https://doi.org/10.1007/s10877-015-9658-y.

    Article  PubMed  Google Scholar 

  14. Avraam J, Bourke R, Trinder J, Nicholas CL, Brazzale D, O’Donoghue FJ, Rochford PD, Jordan AS. The effect of body mass and sex on the accuracy of respiratory magnetometers for measurement of end-expiratory lung volumes. J Appl Physiol (1985). 2016;121(5):1169–77. https://doi.org/10.1152/japplphysiol.00571.2016.

    Article  Google Scholar 

  15. Chekmenev SY, Rara H, Farag AA. Non-contact, wavelet-based measurement of vital signs using thermal imaging. In: Proceedings of the The first international conference on graphics, vision, and image processing (GVIP), Cairo, Egypt, 2005.

  16. Murthy R, Pavlidis I, Tsiamyrtzis P. Touchless Monitoring of Breathing Function. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco, CA, USA, September 1–5, 2004.

  17. Goldman LJ. Nasal airflow and thoracoabdominal motion in children using infrared thermographic video processing. Pediatr Pulmonol. 2012;47(5):476–86. https://doi.org/10.1002/ppul.21570.

    Article  PubMed  Google Scholar 

  18. Fei J, Pavlidis I. Virtual Thermistor. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS. Cité Internationale, Lyon, France, August 23–26, 2007.

  19. Murthy R, Pavlidis I, Tsiamyrtzis P. Touchless monitoring of breathing function 2004.

  20. Fei J, Pavlidis I. Thermistor at a distance: unobtrusive measurement of breathing. IEEE Trans Biomed Eng. 2010;57(4):988–98. https://doi.org/10.1109/tbme.2009.2032415.

    Article  PubMed  Google Scholar 

  21. Abbas AK, Heimann K, Jergus K, Orlikowsky T, Leonhardt S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed Eng Online. 2011;10:93. https://doi.org/10.1186/1475-925x-10-93.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pereira CB, Yu X, Czaplik M, Rossaint R, Blazek V, Leonhardt S. Remote monitoring of breathing dynamics using infrared thermography. Biomed Opt Express. 2015;6(11):4378–94. https://doi.org/10.1364/boe.6.004378.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wareham R, Lasenby J, Cameron P, Iles R. Structured light plethysmography (SLP) compared to spirometry: a pilot study. In: Proceedings of the European Respiratory Society Annual Congress, 2009.

  24. Aoki H, Koshiji K, Nakamura H, Takemura Y, Nakajima M. Study on respiration monitoring method using near-infrared multiple slit-lights projection. In: Proceedings of the Micro-NanoMechatronics and Human Science, 2005 IEEE International Symposium on, 2005.

  25. Aliverti A, DellacÁ R, Pelosi P, Chiumello D, Pedotti A, Gattinoni L. Optoelectronic plethysmography in intensive care patients. Am J Respir Crit Care Med. 2000;161(5):1546–52. https://doi.org/10.1164/ajrccm.161.5.9903024.

    Article  CAS  PubMed  Google Scholar 

  26. Cala S, Kenyon C, Ferrigno G, Carnevali P, Aliverti A, Pedotti A, Macklem P, Rochester D. Chest wall and lung volume estimation by optical reflectance motion analysis. J Appl Physiol. 1996;81(6):2680–9.

    Article  CAS  PubMed  Google Scholar 

  27. Holley K, MacNabb CM, Georgiadis P, Minasyan H, Shukla A, Mathews D. Monitoring minute ventilation versus respiratory rate to measure the adequacy of ventilation in patients undergoing upper endoscopic procedures. J Clin Monit Comput. 2015. https://doi.org/10.1007/s10877-015-9674-y.

    Article  PubMed  Google Scholar 

  28. Voscopoulos C, Brayanov J, Ladd D, Lalli M, Panasyuk A, Freeman J. Special article: evaluation of a novel noninvasive respiration monitor providing continuous measurement of minute ventilation in ambulatory subjects in a variety of clinical scenarios. Anesth Analg. 2013;117(1):91–100. https://doi.org/10.1213/ANE.0b013e3182918098.

    Article  PubMed  Google Scholar 

  29. Voscopoulos CJ, MacNabb CM, Brayanov J, Qin L, Freeman J, Mullen GJ, Ladd D, George E. The evaluation of a non-invasive respiratory volume monitor in surgical patients undergoing elective surgery with general anesthesia. J Clin Monit Comput. 2015;29(2):223–30. https://doi.org/10.1007/s10877-014-9596-0.

    Article  PubMed  Google Scholar 

  30. Bromage PR. Epidural analgesia. Philadelphia: WB Saunders; 1978.

    Google Scholar 

  31. Lucas BD, Kanade T. An iterative image registration technique with an application to stereo vision. 1981.

  32. Tomasi C, Kanade T. Detection and tracking of point features. 1991.

  33. Li H, Lu J, Shi G, Zhang Y. Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm. Biomed Opt Express. 2010;1(1):31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee WO, Lee EC, Park KR. Blink detection robust to various facial poses. J Neurosci Methods. 2010;193(2):356–72. https://doi.org/10.1016/j.jneumeth.2010.08.034.

    Article  PubMed  Google Scholar 

  35. Al-Najdawi N, Tedmori S, Edirisinghe E, Bez H. An automated real-time people tracking system based on KLT Features Detection. Int Arab J Inf Technol. 2012;9:100–107

    Google Scholar 

  36. Lin G, Tsai T. A face tracking method using feature point tracking. In: Proceedings of the 2012 International Conference on Information Security and Intelligent Control, 14–16 Aug. 2012.

  37. Bourel F, Chibelushi CC, Low AA. Robust facial feature tracking. In: Proceedings of the BMVC, 2000.

  38. Adelson EH, Anderson CH, Bergen JR, Burt PJ, Ogden JM. Pyramid methods in image processing. RCA Eng. 1984;29(6):33–41.

    Google Scholar 

  39. Kalal Z, Mikolajczyk K, Matas J. Forward-backward error: Automatic detection of tracking failures. In: Proceedings of the Pattern recognition (ICPR), 2010 20th international conference on, 2010.

  40. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328(17):1230–5. https://doi.org/10.1056/nejm199304293281704.

    Article  CAS  PubMed  Google Scholar 

  41. Anonymous. Practice guidelines for sedation and analgesia by non-anesthesiologists. Anesthesiology. 2002;96(4):1004–17.

    Article  Google Scholar 

  42. Seo S, Han Y, Kim J, Choung JT, Kim BJ, Ahn K. Infrared camera-proven water-damaged homes are associated with the severity of atopic dermatitis in children. Ann Allergy Asthma Immunol. 2014;113(5):549–55. https://doi.org/10.1016/j.anai.2014.08.013.

    Article  PubMed  Google Scholar 

  43. Dini V, Salvo P, Janowska A, Di Francesco F, Barbini A, Romanelli M. Correlation between wound temperature obtained with an infrared camera and clinical wound bed score in venous leg ulcers. Wounds. 2015;27(10):274–8.

    PubMed  Google Scholar 

  44. Singer AJ, Relan P, Beto L, Jones-Koliski L, Sandoval S, Clark RA. Infrared thermal imaging has the potential to reduce unnecessary surgery and delays to necessary surgery in burn patients. J Burn Care Res. 2016;37(6):350–5. https://doi.org/10.1097/bcr.0000000000000330.

    Article  PubMed  Google Scholar 

  45. Avetisov SE, Novikov IA, Lutsevich EE, Reyn ES. Use of infrared thermography in ophthalmology. Vestn Oftalmol. 2017;133(6):99–105. https://doi.org/10.17116/oftalma2017133699-104.

    Article  CAS  PubMed  Google Scholar 

  46. Owen R, Ramlakhan S, Saatchi R, Burke D. Development of a high-resolution infrared thermographic imaging method as a diagnostic tool for acute undifferentiated limp in young children. Med Biol Eng Comput. 2017. https://doi.org/10.1007/s11517-017-1749-0.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hu M, Zhai G, Li D, Fan Y, Duan H, Zhu W, Yang X. Combination of near-infrared and thermal imaging techniques for the remote and simultaneous measurements of breathing and heart rates under sleep situation. PLoS ONE. 2018;13(1):e0190466. https://doi.org/10.1371/journal.pone.0190466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wild T, Becker M, Winter J, Schuhschenk N, Daeschlein G, Siemers F. Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing. J Wound Care. 2018;27(1):38–51. https://doi.org/10.12968/jowc.2018.27.1.38.

    Article  PubMed  Google Scholar 

  49. Gonzalez Castro LN, Mehta JH, Brayanov JB, Mullen GJ. Quantification of respiratory depression during pre-operative administration of midazolam using a non-invasive respiratory volume monitor. PLoS ONE. 2017;12(2):e0172750. https://doi.org/10.1371/journal.pone.0172750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheung-soo Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kwon, J.H., Kim, E. et al. Respiratory measurement using infrared thermography and respiratory volume monitor during sedation in patients undergoing endoscopic urologic procedures under spinal anesthesia. J Clin Monit Comput 33, 647–656 (2019). https://doi.org/10.1007/s10877-018-0214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0214-4

Keywords

Navigation