Skip to main content

Advertisement

Log in

Effect of neuromuscular blockade on transcranial electric motor evoked potentials during surgical correction for idiopathic scoliosis under total intravenous anesthesia

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Transcranial electric motor evoked potentials (TCeMEPs) play an important role in reducing the risk of iatrogenic paraplegia. TCeMEPs could be obviously suppressed by neuromuscular blockade (NMB). The aims of this study were to examine the effects of NMB on TCeMEPs and to determine an appropriate level of partial neuromuscular blockade (pNMB) for TCeMEPs during surgical correction of idiopathic scoliosis under total intravenous anesthesia (TIVA). All patients were maintained with TIVA. The pNMB levels were classified into five phases: one or two train-of-four (TOF) counts (TOF1); three TOF counts, or T4/T1 (TOFR, T1,4, first or four twitch height of TOF) ≤ 15% (TOF2); TOFR at 16–25% (TOF3); TOFR at 26–50% (TOF4); and TOFR at 51–75% (TOF5). No neuromuscular blockade (nNMB) was achieved when TOFR was more than 75%. The absolute and relative latency, amplitude and area under curve (AUC), efficacy of TCeMEPs and rate of unexpected movement were compared among these phases. Neither the amplitude and AUC nor the efficacy of TCeMEPs were affected at TOF4−5 of abductor halluces muscles TCeMEPs (AH-TCeMEPs) or at TOF3−5 of tibialis anterior muscles TCeMEPs (TA-TCeMEPs) compared with nNMB. However, the rate of unexpected movement was increased significantly at TOF5 and nNMB compared with TOF1 and TOF4. The application of pNMB with TOFR aimed at 26–50% for AH-TCeMEPs or 16–50% for TA-TCeMEPs seems to be an appropriate regimen for TCeMEPs during surgical correction for idiopathic scoliosis under TIVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vitale MG, Moore DW, Matsumoto H, Emerson RG, Booker WA, Gomez JA, Gallo EJ, Hyman JE, Roye DP Jr. Risk factors for spinal cord injury during surgery for spinal deformity. J Bone Joint Surg. 2010;92(1):64–71. https://doi.org/10.2106/jbjs.h.01839.

    Article  PubMed  Google Scholar 

  2. Neira VM, Ghaffari K, Bulusu S, Moroz PJ, Jarvis JG, Barrowman N, Splinter W. Diagnostic accuracy of neuromonitoring for identification of new neurologic deficits in pediatric spinal fusion surgery. Anesth Analg. 2016;123(6):1556–66. https://doi.org/10.1213/ane.0000000000001503.

    Article  PubMed  Google Scholar 

  3. Pastorelli F, Di Silvestre M, Plasmati R, Michelucci R, Greggi T, Morigi A, Bacchin MR, Bonarelli S, Cioni A, Vommaro F, Fini N, Lolli F, Parisini P. The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J. 2011;20(Suppl 1):105–14. https://doi.org/10.1007/s00586-011-1756-z.

    Article  PubMed Central  Google Scholar 

  4. Thuet ED, Winscher JC, Padberg AM, Bridwell KH, Lenke LG, Dobbs MB, Schootman M, Luhmann SJ. Validity and reliability of intraoperative monitoring in pediatric spinal deformity surgery: a 23-year experience of 3436 surgical cases. Spine. 2010;35(20):1880–6. https://doi.org/10.1097/BRS.0b013e3181e53434.

    Article  PubMed  Google Scholar 

  5. Ohtaki S, Akiyama Y, Kanno A, Noshiro S, Hayase T, Yamakage M, Mikuni N. The influence of depth of anesthesia on motor evoked potential response during awake craniotomy. J Neurosurg. 2017;126(1):260–5. https://doi.org/10.3171/2015.11.jns151291.

    Article  PubMed  Google Scholar 

  6. Lieberman JA, Feiner J, Lyon R, Rollins MD. Effect of hemorrhage and hypotension on transcranial motor-evoked potentials in swine. Anesthesiology. 2013;119(5):1109–19. https://doi.org/10.1097/ALN.0b013e31829d4a92.

    Article  CAS  PubMed  Google Scholar 

  7. Sakamoto T, Kawaguchi M, Kakimoto M, Inoue S, Takahashi M, Furuya H. The effect of hypothermia on myogenic motor-evoked potentials to electrical stimulation with a single pulse and a train of pulses under propofol/ketamine/fentanyl anesthesia in rabbits. Anesth Analg. 2003;96(6):1692–7 (table of contents).

    Article  CAS  PubMed  Google Scholar 

  8. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):430–43.

    Article  PubMed  Google Scholar 

  9. Tsutsui S, Iwasaki H, Yamada H, Hashizume H, Minamide A, Nakagawa Y, Nishi H, Yoshida M. Augmentation of motor evoked potentials using multi-train transcranial electrical stimulation in intraoperative neurophysiologic monitoring during spinal surgery. J Clin Monit Comput. 2015;29(1):35–9. https://doi.org/10.1007/s10877-014-9565-7.

    Article  PubMed  Google Scholar 

  10. Yang J, Huang Z, Shu H, Chen Y, Sun X, Liu W, Dou Y, Xie C, Lin X, Hu Y. Improving successful rate of transcranial electrical motor-evoked potentials monitoring during spinal surgery in young children. Eur Spine J. 2012;21(5):980–4. https://doi.org/10.1007/s00586-011-1995-z.

    Article  PubMed  Google Scholar 

  11. Azabou E, Manel V, Andre-obadia N, Fischer C, Mauguiere F, Peiffer C, Lofaso F, Shils JL. Optimal parameters of transcranial electrical stimulation for intraoperative monitoring of motor evoked potentials of the tibialis anterior muscle during pediatric scoliosis surgery. Clin Neurophysiol. 2013;43(4):243–50. https://doi.org/10.1016/j.neucli.2013.08.001.

    Article  CAS  Google Scholar 

  12. Mendiratta A, Emerson RG. Neurophysiologic intraoperative monitoring of scoliosis surgery. J Clin Neurophysiol. 2009;26(2):62–9. https://doi.org/10.1097/WNP.0b013e31819f9049.

    Article  PubMed  Google Scholar 

  13. Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge BL. Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg. 1992;75(4):584–9.

    Article  CAS  PubMed  Google Scholar 

  14. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, de Boer A, Boezeman EH. Within-patient variability of myogenic motor-evoked potentials to multipulse transcranial electrical stimulation during two levels of partial neuromuscular blockade in aortic surgery. Anesth Analg. 1999;88(1):22–7.

    PubMed  Google Scholar 

  15. Cengiz M, Ganidagli S, Alatas N, San I, Baysal Z. Partial neuromuscular blockage levels with mivacurium during mastoidectomy allows intraoperative facial nerve monitoring. ORL. 2008;70(4):236–241. https://doi.org/10.1159/000130871.

    Article  CAS  PubMed  Google Scholar 

  16. Claudius C, Viby-Mogensen J. Acceleromyography for use in scientific and clinical practice: a systematic review of the evidence. Anesthesiology. 2008;108(6):1117–40. https://doi.org/10.1097/ALN.0b013e318173f62f.

    Article  PubMed  Google Scholar 

  17. Leon-Sarmiento FE, Rizzo-Sierra CV, Leon-Ariza JS, Leon-Ariza DS, Sobota R, Prada DG. A new neurometric dissection of the area-under-curve-associated jiggle of the motor evoked potential induced by transcranial magnetic stimulation. Physiol Behav. 2015;141:111–9. https://doi.org/10.1016/j.physbeh.2015.01.014.

    Article  CAS  PubMed  Google Scholar 

  18. Tamkus AA, Rice KS, Kim HL. Differential rates of false-positive findings in transcranial electric motor evoked potential monitoring when using inhalational anesthesia versus total intravenous anesthesia during spine surgeries. Spine J. 2014;14(8):1440–6. https://doi.org/10.1016/j.spinee.2013.08.037.

    Article  PubMed  Google Scholar 

  19. Zhuang Q, Wang S, Zhang J, Zhao H, Wang Y, Tian Y, Zhao Y, Li S, Weng X, Qiu G, Shen J. How to make the best use of intraoperative motor evoked potential monitoring? Experience in 1162 consecutive spinal deformity surgical procedures. Spine. 2014;39(24):E1425–32. https://doi.org/10.1097/brs.0000000000000589.

    Article  PubMed  Google Scholar 

  20. Sloan TB, Erian R. Effect of vecuronium-induced neuromuscular blockade on cortical motor evoked potentials. Anesthesiology. 1993;78(5):966–73.

    Article  CAS  PubMed  Google Scholar 

  21. Kim WH, Lee JJ, Lee SM, Park MN, Park SK, Seo DW, Chung IS. Comparison of motor-evoked potentials monitoring in response to transcranial electrical stimulation in subjects undergoing neurosurgery with partial vs no neuromuscular block. Br J Anaesth. 2013;110(4):567–76. https://doi.org/10.1093/bja/aes395.

    Article  CAS  PubMed  Google Scholar 

  22. Hemmer LB, Zeeni C, Bebawy JF, Bendok BR, Cotton MA, Shah NB, Gupta DK, Koht A. The incidence of unacceptable movement with motor evoked potentials during craniotomy for aneurysm clipping. World Neurosurg. 2014;81(1):99–104. https://doi.org/10.1016/j.wneu.2012.05.034.

    Article  PubMed  Google Scholar 

  23. Yamamoto Y, Kawaguchi M, Hayashi H, Horiuchi T, Inoue S, Nakase H, Sakaki T, Furuya H. The effects of the neuromuscular blockade levels on amplitudes of posttetanic motor-evoked potentials and movement in response to transcranial stimulation in patients receiving propofol and fentanyl anesthesia. Anesth Analg. 2008;106(3):930–4. https://doi.org/10.1213/ane.0b013e3181617508 (table of contents).

    Article  CAS  PubMed  Google Scholar 

  24. Mahmoud M, Sadhasivam S, Salisbury S, Nick TG, Schnell B, Sestokas AK, Wiggins C, Samuels P, Kabalin T, McAuliffe J. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112(6):1364–73. https://doi.org/10.1097/ALN.0b013e3181d74f55.

    Article  CAS  PubMed  Google Scholar 

  25. Schwartz DM, Sestokas AK, Dormans JP, Vaccaro AR, Hilibrand AS, Flynn JM, Li PM, Shah SA, Welch W, Drummond DS, Albert TJ. Transcranial electric motor evoked potential monitoring during spine surgery: is it safe? Spine. 2011;36(13):1046–9. https://doi.org/10.1097/BRS.0b013e3181ecbe77.

    Article  PubMed  Google Scholar 

  26. Oro J, Haghighi SS. Effects of altering core body temperature on somatosensory and motor evoked potentials in rats. Spine. 1992;17(5):498–503.

    Article  CAS  PubMed  Google Scholar 

  27. Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, Laufer S, Shah SA, Bowen JR, Pizzutillo PD, Jones KJ, Drummond DS. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg. 2007;89(11):2440–9. https://doi.org/10.2106/jbjs.f.01476.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by the National Natural Science Foundation (81371207), the Key Talent’s of 13th Five-year Plan for Strengthening Health of Jiangsu Province (ZDRCA2016069), the Key Talent’s Project in Medical Science of Jiangsu Province (RC2011006), the Fundamental Research Funds for the Central Universities (0214-14380338), the Natural Science Foundation of Jiangsu Province of China (BK20170654) and the National Natural Science Foundation (81701371). We thank Hua-ye Xu, Jie Chen, Fen Song and Shi-he Cui, who are anesthetists in the department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University. We also thank Jun-yin Qiu, neurologist in the department of Orthopaedic Surgery, Affiliated Drum Tower Hospital of Medical Department of Nanjing University for her invaluable assistance in collecting the data in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ping Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Hy., Xia, Tj., Zhu, Zz. et al. Effect of neuromuscular blockade on transcranial electric motor evoked potentials during surgical correction for idiopathic scoliosis under total intravenous anesthesia. J Clin Monit Comput 33, 471–479 (2019). https://doi.org/10.1007/s10877-018-0182-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0182-8

Keywords

Navigation