Advertisement

An elevated respiratory quotient predicts complications after cardiac surgery under extracorporeal circulation: an observational pilot study

  • J. Piot
  • A. Hébrard
  • M. Durand
  • J. F. Payen
  • P. Albaladejo
Original Research
  • 47 Downloads

Abstract

Following cardiac surgery, hyperlactatemia due to anaerobic metabolism is associated with an increase in both morbidity and mortality. We previously found that an elevated respiratory quotient (RQ) predicts anaerobic metabolism. In the present study we aimed to demonstrate that it is also associated with poor outcome following cardiac surgery. This single institution, prospective, observational study includes all those patients that were consecutively admitted to the intensive care unit (ICU) after cardiac surgery with cardiopulmonary bypass, that had also been monitored using pulmonary artery catheter. Data were recorded at admission (H0) and after one hour (H1) including: oxygen consumption (\({\text{VO}}_{2}\)), carbon dioxide production (\({\text{VCO}}_{2}\)), RQ (\({\text{VO}_{2}}/{\text{VCO}_{2}}\)), lactate levels and mixed venous oxygen saturation (\({\text{SvO}}_{2}\)). The primary endpoint was defined as mortality at 30 days. Comparison of the area under the curve (AUC) for receiver operating characteristic curves was used to analyze the prognostic predictive value of RQ, lactate levels and \({\text{SvO}}_{2}\), in terms of patient outcome. We studied 151 patients admitted to the ICU between May 2015 and February 2016. Seventy eight patients experienced a worse than expected outcome in the post-operative period, and among those seven died. RQ at H1 in non-survivors (\(0.83\pm 0.08\)) was higher than in survivors (\(0.75\pm 0.09\); p = 0.02). The AUC for RQ to predict mortality was 0.77 (IC95% [0.70–0.84]), with a threshold value of 0.76 (sensitivity 64%, specificity 100%). By comparison, the AUC for lactate levels was significantly superior (AUClact 0.89, IC95% [0.83–0.93], p = 0.02). In this study, elevated RQ appeared to be predictive of mortality after cardiac surgery with CPB.

Keywords

Post-operative Lactate \({\text{SvO}}_{2}\) Mortality Organ failure Respiratory quotient 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Giezeman A, Bosman RJ, Oudemans-van Straaten HM, der Spoel HI, Wester JPJ, Zandstra DF. Poster Sessions 598-724. Intensive Care Med. 2002;28(S1):S155–86.  https://doi.org/10.1007/s00134-002-1458-4 ISSN 0342-4642.CrossRefGoogle Scholar
  2. 2.
    Håkanson E, Svedjeholm R, Vanhanen I. Physiologic aspects in postoperative cardiac patients. Ann. Thorac. Surg. 1995;59(2 Suppl):S1214 ISSN 0003-4975.Google Scholar
  3. 3.
    Holm J, Håkanson E, Vánky F, Svedjeholm R. Mixed venous oxygen saturation predicts short- and long-term outcome after coronary artery bypass grafting surgery: a retrospective cohort analysis. Br. J. Anaesth. 2011;107(3):344–3450.CrossRefPubMedGoogle Scholar
  4. 4.
    Holm J, Håkanson RE, Vánky F, Svedjeholm R. Mixed venous oxygen saturation is a prognostic marker after surgery for aortic stenosis. Acta Anaesthesiol. Scand. 2010;54(5):589–95.  https://doi.org/10.1111/j.1399-6576.2009.02205.x ISSN 00015172CrossRefPubMedGoogle Scholar
  5. 5.
    Maillet JM, Le Besnerais P, Cantoni M, Nataf P, Ruffenach A, Lessana A, Brodaty D. Frequency, risk factors, and outcome of hyperlactatemia after cardiac surgery. Chest. 2003;123(5):1361–6.  https://doi.org/10.1378/chest.123.5.1361 ISSN 00123692.CrossRefPubMedGoogle Scholar
  6. 6.
    Pekka P, Esko R, Mikko H, Mikko P, Jukka T. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth. Analg. 2000;90(5):1052–9.  https://doi.org/10.1097/00000539-200005000-00010 ISSN 0003-2999.CrossRefGoogle Scholar
  7. 7.
    Chiara O, Giomarelli PP, Biagioli B, Rosi R, Gattinoni L. Hypermetabolic response after hypothermic cardiopulmonary bypass. Crit. Care Med. 1987;15(11):995–1000.CrossRefPubMedGoogle Scholar
  8. 8.
    Pezzella T, Ferraris VA, Lancey RA. Care of the adult cardiac surgery patient: part I. Curr. Probl. Surg. 2004;41(5):458–516.  https://doi.org/10.1016/j.cpsurg.2004.03.001 ISSN 00113840.CrossRefPubMedGoogle Scholar
  9. 9.
    Kirkeby-Garstad I, Sellevold OFM, Stenseth R, Skogvoll E. Mixed venous oxygen desaturation during early mobilization after coronary artery bypass surgery. Acta Anaesthesiol. Scand. 2005;49(6):827–34.  https://doi.org/10.1111/j.1399-6576.2004.00617.x ISSN 0001-5172.CrossRefPubMedGoogle Scholar
  10. 10.
    Pölönen P, Hippeläinen M, Takala R, Ruokonen E, Takala J. Relationship between intra- and postoperative oxygen transport and prolonged intensive care after cardiac surgery: a prospective study. Acta Anaesthesiol. Scand. 1997;41(7):810–7.  https://doi.org/10.1111/j.1399-6576.1997.tb04793.x ISSN 00015172.CrossRefPubMedGoogle Scholar
  11. 11.
    Futier E, Robin E, Jabaudon M, Guerin R, Petit A, Bazin J-E, Constantin J-M, Vallet B. Central venous O2 saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery. Crit. Care. 2010;14(5):R193. ISSN 1364–8535.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    O’Connor JP, Townsend GE. Perioperative continuous monitoring of mixed venous oxygen saturation should be routine during high-risk cardiac surgery. J. Cardiothorac. Anesth. 1990;4(5):647–50.  https://doi.org/10.1016/0888-6296(90)90416-D ISSN 08886296.CrossRefPubMedGoogle Scholar
  13. 13.
    Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO 2 difference in circulatory shock. Minerva Anestesiol. 2006;72(6):597–604 ISSN 0375-9393.PubMedGoogle Scholar
  14. 14.
    Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J. Appl. Physiol. 2000;89(4):1317–21.  https://doi.org/10.1152/jappl.2000.89.4.1317 ISSN 8750-7587.CrossRefPubMedGoogle Scholar
  15. 15.
    Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, Teboul J-L. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28(3):272–7.  https://doi.org/10.1007/s00134-002-1215-8 ISSN 0342-4642.CrossRefPubMedGoogle Scholar
  16. 16.
    Ranucci M. Which cardiac surgical patients can benefit from placement of a pulmonary artery catheter? Crit. Care. 2006;10(Suppl. 3):S6.  https://doi.org/10.1186/cc4833 ISSN 13648535.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Brandi LS, Bertolini R, Calafà M. Indirect calorimetry in critically ill patients: clinical applications and practical advice. Nutrition. 1997;13(4):349–58 ISSN 0899-9007.CrossRefPubMedGoogle Scholar
  18. 18.
    Faisy C, Taylor SJ. Dépense énergétique en réanimation. Reanimation. 2009;485(6):18–477.  https://doi.org/10.1016/j.reaurg.2009.05.017 ISSN 16240693.Google Scholar
  19. 19.
    Geir S, Bjørn R, Skjønsberg OH, Borchsenius F. Respiratory gas exchange indices for estimating the anaerobic threshold. J. Sports Sci. Med. 2005;4(1):29–36 ISSN 1303-2968.Google Scholar
  20. 20.
    Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, Persichini R, Anguel N, Richard C, Teboul JL. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit. Care Med. 2013;41(6):1412–20.  https://doi.org/10.1097/CCM.0b013e318275cece ISSN 00903493.CrossRefPubMedGoogle Scholar
  21. 21.
    Smith I, Kumar P, Molloy S, Rhodes A, Newman PJ, Grounds RM, Bennett ED. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med. 2001;27(1):74–83.  https://doi.org/10.1007/s001340051352 ISSN 03424642.CrossRefPubMedGoogle Scholar
  22. 22.
    Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring: task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.  https://doi.org/10.1007/s00134-014-3525-z.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Kruse JA, Zaidi Syed AJ, Carlson RW. Significance of blood lactate levels in critically III patients with liver disease. Am. J. Med. 1987;83(1):77–82.  https://doi.org/10.1016/0002-9343(87)90500-6 ISSN 00029343.CrossRefPubMedGoogle Scholar
  24. 24.
    Hu BBY, Laine GA, Wang S, Solis RT. Combined central venous oxygen saturation and lactate as markers of occult hypoperfusion and outcome following cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2012;26(1):52–7.  https://doi.org/10.1053/j.jvca.2011.07.021 ISSN 10530770.CrossRefPubMedGoogle Scholar
  25. 25.
    Valenza F, Aletti G, Fossali T, Chevallard G, Sacconi F, Irace M, Gattinoni L. Lactate as a marker of energy failure in critically ill patients: hypothesis. Crit. Care. 2005;9(6):588–93.  https://doi.org/10.1186/cc3818 ISSN 13648535.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R. A trial of goal-oriented hemodynamic therapy in critically Ill patients. N. Engl. J. Med. 1995;333(16):1025–32.  https://doi.org/10.1056/NEJM199510193331601 ISSN 0028-4793.CrossRefPubMedGoogle Scholar
  27. 27.
    Totaro RJ, Raper RF. Epinephrine-induced lactic acidosis following cardiopulmonary bypass. Crit. Care Med. 1997;25(10):1693–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Hosein RBM, Morris KP, Brawn WJ, Barron DJ. Use of tissue microdialysis to investigate hyperlactataemia following paediatric cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2008;7(3):384–8.  https://doi.org/10.1510/icvts.2007.166264 ISSN 1569-9293.CrossRefPubMedGoogle Scholar
  29. 29.
    Shepherd Stephen J, Pearse Rupert M. Role of central and mixed venous oxygen saturation measurement in perioperative care. Anesthesiology. 2009;111(3):649–56.  https://doi.org/10.1097/ALN.0b013e3181af59aa ISSN 15281175.CrossRefPubMedGoogle Scholar
  30. 30.
    Legrand M, Mateo J, Payen D. Influence of arterial dissolved oxygen level on venous oxygen saturation: don’t forget the PaO2!. Shock. 2014;41(6):510–3.  https://doi.org/10.1097/SHK.0000000000000162 ISSN 15400514.CrossRefPubMedGoogle Scholar
  31. 31.
    Rupert P, Deborah D, Jayne F, Andrew R, Michael GR, David BE. Changes in central venous saturation after major surgery, and association with outcome. Crit. Care. 2005;9(6):R694–9.  https://doi.org/10.1186/cc3888 ISSN 1466-609X.CrossRefGoogle Scholar
  32. 32.
    Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, Samii K, Fourcade O, Genestal M. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34(12):2218–25.  https://doi.org/10.1007/s00134-008-1199-0 ISSN 03424642.CrossRefPubMedGoogle Scholar
  33. 33.
    Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterization in the initial care of critically ill patients. Jama. 1996;276(11):889–97.CrossRefPubMedGoogle Scholar
  34. 34.
    Ramsey SD, Saint S, Sullivan SD, Dey L, Kelley K, Bowdle A. Clinical and economic effects of pulmonary artery catheterization in nonemergent coronary artery bypass graft surgery. J. Cardiothorac. Vasc. Anesth. 2000;14(2):113–8.  https://doi.org/10.1016/S1053-0770(00)90001-6 ISSN 10530770.CrossRefPubMedGoogle Scholar
  35. 35.
    Nashef SAM, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, Lockowandt U. Euroscore II. Eur. J. Cardio-thoracic Surg. 2012;41(4):734–45.  https://doi.org/10.1093/ejcts/ezs043 ISSN 10107940.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.PAR CHU Grenoble AlpesGrenoble Cedex 9France

Personalised recommendations