Near-real-time pulmonary shunt and dead space measurement with micropore membrane inlet mass spectrometry in pigs with induced pulmonary embolism or acute lung failure


The multiple inert gas elimination technique (MIGET) using gas chromatography (GC) is an established but time-consuming method of determining ventilation/perfusion (VA/Q) distributions. MIGET—when performed using Micropore Membrane Inlet Mass Spectrometry (MMIMS)—has been proven to correlate well with GC-MIGET and reduces analysis time substantially. We aimed at comparing shunt fractions and dead space derived from MMIMS–MIGET with Riley shunt and Bohr dead space, respectively. Thirty anesthetized pigs were randomly assigned to lavage or pulmonary embolism groups. Inert gas infusion (saline mixture of SF6, krypton, desflurane, enflurane, diethyl ether, acetone) was maintained, and after induction of lung damage, blood and breath samples were taken at 15-min intervals over 4 h. The samples were injected into the MMIMS, and resultant retention and excretion data were translated to VA/Q distributions. We compared MMIMS-derived shunt (MM-S) to Riley shunt, and MMIMS-derived dead space (MM-VD) to Bohr dead space in 349 data pairs. MM-S was on average lower than Riley shunt (− 0.05 ± 0.10), with lower and upper limits of agreement of − 0.15 and 0.04, respectively. MM-VD was on average lower than Bohr dead space (− 0.09 ± 0.14), with lower and upper limits of agreement of − 0.24 and 0.05. MM-S and MM-VD correlated and agreed well with Riley shunt and with Bohr dead space. MM-S increased significantly after lung injury only in the lavage group, whereas MM-VD increased significantly in both groups. This is the first work evaluating and demonstrating the feasibility of near real-time VA/Q distribution measurements with the MIGET and the MMIMS methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Hedenstierna G, Edmark L. The effects of anesthesia and muscle paralysis on the respiratory system. Intensive Care Med. 2005;31(10):1327–35.

    Article  PubMed  Google Scholar 

  2. 2.

    Powell ES, Pearce AC, Cook D, Davies P, Bishay E, Bowler GM, Gao F, Co-ordinators U. UK pneumonectomy outcome study (UKPOS): a prospective observational study of pneumonectomy outcome. J Cardiothorac Surg. 2009;4:41.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest. 2008;133(5):1120–7.

    Article  PubMed  Google Scholar 

  4. 4.

    Riley RL, Cournand A, Donald KW. Analysis of factors affecting partial pressures of oxygen and carbon dioxide in gas and blood of lungs; methods. J Appl Physiol. 1951;4(2):102–20.

    CAS  Article  Google Scholar 

  5. 5.

    Wagner PD. The multiple inert gas elimination technique (MIGET). Intensive Care Med. 2008;34(6):994–1001.

    Article  PubMed  Google Scholar 

  6. 6.

    Sapsford DJ, Jones JG. The PIO2 vs. SpO2 diagram: a non-invasive measure of pulmonary oxygen exchange. Eur J Anaesthesiol. 1995;12(4):375–86.

    CAS  PubMed  Google Scholar 

  7. 7.

    Thomsen LP, Karbing DS, Smith BW, Murley D, Weinreich UM, Kjærgaard S, Toft E, Thorgaard P, Andreassen S, Rees SE. Clinical refinement of the automatic lung parameter estimator (ALPE). J Clin Monit Comput. 2013;27(3):341–50.

    Article  PubMed  Google Scholar 

  8. 8.

    Wagner PD, Dantzker DR, Dueck R, Clausen JL, West JB. Ventilation-perfusion inequality in chronic obstructive pulmonary disease. J Clin Investig. 1977;59(2):203–16.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Baumgardner JE, Choi IC, Vonk-Noordegraaf A, Frasch HF, Neufeld GR, Marshall BE. Sequential V(A)/Q distributions in the normal rabbit by micropore membrane inlet mass spectrometry. J Appl Physiol. 2000;(1985) 89(5):1699–708.

    CAS  Article  Google Scholar 

  10. 10.

    Duenges B, Vogt A, Bodenstein M, Wang H, Bohme S, Rohrig B, Baumgardner JE, Markstaller K. A comparison of micropore membrane inlet mass spectrometry-derived pulmonary shunt measurement with Riley shunt in a porcine model. Anesth Analg. 2009;109(6):1831–5.

    Article  PubMed  Google Scholar 

  11. 11.

    Kretzschmar M, Schilling T, Vogt A, Rothen HU, Borges JB, Hachenberg T, Larsson A, Baumgardner JE, Hedenstierna G. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry—a comparison with reference gas chromatography. J Appl Physiol. 2013;(1985) 115(8):1107–18.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hlastala MP, Colley PS, Cheney FW. Pulmonary shunt: a comparison between oxygen and inert gas infusion methods. J Appl Physiol. 1975;39(6):1048–51.

    CAS  Article  Google Scholar 

  13. 13.

    Tusman G, Sipmann FS, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37(5):870–4.

    Article  PubMed  Google Scholar 

  14. 14.

    Neumann P, Hedenstierna G. Ventilation-perfusion distributions in different porcine lung injury models. Acta Anaesthesiol Scand. 2001;45(1):78–86.

    CAS  Article  Google Scholar 

  15. 15.

    Rees SE, Kjaergaard S, Andreassen S, Hedenstierna G. Reproduction of MIGET retention and excretion data using a simple mathematical model of gas exchange in lung damage caused by oleic acid infusion. J Appl Physiol (1985). 2006;101(3):826–32.

    CAS  Article  Google Scholar 

  16. 16.

    Kjaergaard B, Kristensen SR, Risom M, Larsson A. A porcine model of massive, totally occlusive, pulmonary embolism. Thromb Res. 2009;124(2):226–9.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol. 1974;36(5):588–99.

    CAS  Article  Google Scholar 

  18. 18.

    Riley RL, Cournand A. Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol. 1949;1(12):825–47.

    CAS  Article  Google Scholar 

  19. 19.

    Bohr C. Über die Lungenatmung. Skand Arch Physiol. 1891;2:236–8.

    Article  Google Scholar 

  20. 20.

    Fowler WS. Lung function studies; the respiratory dead space. Am J Physiol. 1948;154(3):405–16.

    CAS  Article  Google Scholar 

  21. 21.

    Tusman G, Sipmann FS, Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesth Analg. 2012;114(4):866–74.

    Article  PubMed  Google Scholar 

  22. 22.

    Team RC. (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. 2015. http://www.R-projectorg.

  23. 23.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    CAS  Article  Google Scholar 

  24. 24.

    Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.

    CAS  Article  Google Scholar 

  25. 25.

    Kretzschmar M, Kozian A, Baumgardner JE, Schreiber J, Hedenstierna G, Larsson A, Hachenberg T, Schilling T. Bronchoconstriction induced by inhaled methacholine delays desflurane uptake and elimination in a piglet model. Respir Physiol Neurobiol. 2016;220:88–94.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Batchinsky AI, Weiss WB, Jordan BS, Dick EJ Jr, Cancelada DA, Cancio LC. Ventilation-perfusion relationships following experimental pulmonary contusion. J Appl Physiol (1985). 2007;103(3):895–902.

    Article  Google Scholar 

  27. 27.

    George SC, Babb AL, Hlastala MP. Dynamics of soluble gas exchange in the airways. III. Single-exhalation breathing maneuver. J Appl Physiol (1985). 1993;75(6):2439–49.

    CAS  Article  Google Scholar 

  28. 28.

    Anderson JC, Hlastala MP. Impact of airway gas exchange on the multiple inert gas elimination technique: theory. Ann Biomed Eng. 2010;38(3):1017–30.

    Article  Google Scholar 

  29. 29.

    Wagner PD, Laravuso RB, Goldzimmer E, Naumann PF, West JB. Distribution of ventilation-perfusion ratios in dogs with normal and abnormal lungs. J Appl Physiol. 1975;38(6):1099–109.

    CAS  Article  Google Scholar 

Download references


The authors thank Daniel Mettler and Olgica Beslac of the ESI, Experimental Surgery Unit, medical faculty of the University of Bern, Switzerland, for providing the infrastructure and very helpful support and assistance. We would also like to thank Lukas Häller, Master’s Student in Medicine at the University of Bern, for assistance with data acquisition, sample collection, handling and transport. The authors thank Jeannie Wurz for her proofreading and English language editing support. This research was supported by SNF Grant 320030_133046.

Author information



Corresponding author

Correspondence to A. Vogt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the cantonal ethics committee of Bern, Switzerland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CSV 988 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerber, D., Vasireddy, R., Varadarajan, B. et al. Near-real-time pulmonary shunt and dead space measurement with micropore membrane inlet mass spectrometry in pigs with induced pulmonary embolism or acute lung failure. J Clin Monit Comput 33, 1033–1041 (2019).

Download citation


  • Pulmonary embolism
  • Intrapulmonary shunt and O2 therapy
  • Respiratory function: dead space
  • VQ mismatch: causes
  • Level of hypoxemia: factors impacting